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Beyond BHK0

0. Introduction. On a misleading tradition. Traditionally, the “language” of the first-
order classical logic has means of referring to “individuals” in some domain (so-called
univers du discours) and means of expressing “facts” (or “propositions”) about them.
The proofs themselves are handled in a non-objectual way. In particular, they are
not codified syntactically. Some other kind of representation is implicitly involved in
the so-called “proof theory”. Usually, the latter makes appeal to the eye (as opposed
to the mind !), rendering any theoretical approach to logic debatable.1 This policy,
justified, now and then, by an essentially empiricist metaphysics of vision [paradig-
matically: Wittgenstein, but also the early Kreisel] is common in the post-Fregean
logic tradition. Among other things, it forbids subjects like “proof-semantics for clas-
sical logic”, for instance. On the same basis, it does not make too much sense to

0“Extended abstract”. A reprint from: Henk Barendregt, Marc Bezem & Jan Willem
Klop (eds.) Dirk van Dalen Festschrift, Utrecht 1993, pp. 114–120 [Quaestiones Infinitae V
– Publications of the Department of Philosophy, Utrecht University ] The full paper [“monograph”]
is [likely] published elsewhere. Besides the obvious historical debts in matters of concern below,
the author is, directly or indirectly, indebted to several persons, among whom (in, more or less, a
subjective historical order): Corrado Böhm, Ernst Engeler, Dag Prawitz, Nuel D. Belnap Jr., Roger J.
Hindley, Jon [= Jonathan P.] Seldin, Anne S. Troelstra, Henk [= Hendrik Pieter] Barendregt, Dirk
van Dalen, David Meredith, Alonzo Church, Jeff [= Jeffrey] Zucker, Dick [= Nicolaas G.] de Bruijn,
Bert [= L. S.] van Benthem Jutting, Diederik [= D. T.] van Daalen, Rob [= R. L.] Nederpelt, Peter
[= P. A G.] Aczel, Per Martin-Löf, Martin [= Marteen] Bunder, Bob [= Robert K.] Meyer, Matthias
Felleisen, and – [very] last[ly], but not least – Jean-Yves Girard.

1As understood here, logic is a theory about proofs, codifying, basically, our intuitions on inference
and generality .
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look for theoretical criteria of proof-identity , beyond obvious isomorphisms that can
be established on “proof-figures”, “proof-trees” or some other ad hoc organization of
the visual representation space.

The [Frege]-Hilbert-Gentzen proof-theoretic tradition is, in fact, almost exclusively
concerned with provability .2 As useful as it might have been on a pure epistemological
level (as opposing various metaphysical, psychological, or linguistic views on the “na-
ture of proving”, for instance), the “positive” investigation of the combinatorial prop-
erties of formula-configurations and the resulting discipline (the “metamathematics”,
as understood in the Hilbert school) remained parochial enterprises: proof-structures
and proof-properties were thereby ignored programatically.3

There is room for a mathematically specific way of thinking about proofs, however,
going beyond the elementary tree-mathematics. We are – surprisingly, indeed – able

2This is a property of formulas (or, if one prefers, one of propositions), not a proof-property .
Needless to say that model-theorists have been significantly more successful, so far, in extracting
mathematically specific information on this matter.

3For the historian, the picture is somewhat more complex, since, as early as in 1904 [at the
Third Int. Math. Congress], building upon his previous experience in axiomatics [for geometry],
Hilbert can be seen to adopt, methodologically, an amalgamating standpoint in metamathematical
research, advocating explicitly the need for a “partially simultaneous development of the laws of
logic and arithmetic” [read: “analysis”]. As a side-effect, the new discipline comes to be confused,
from the very beginning, about [the nature of] logic and/or its specifics, as contrasted with bare
“mathematical” topics. (Although the factual pre-history of the so-called “Hilbert program” has
been studied recently in detail [cf. Volker Peckhaus: Ph D Diss., Erlangen-Nürenberg 1990], the wide
implications of this “completely new aspect” of Hilbert’s thought – as Paul Bernays used still to think
of it, in the early thirties – for the contemporary logic and proof-theory deserved little attention so
far.)
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to recognize and identify proofs on pure theoretical grounds. But the objects we are
looking for, their structure and formal behavior, are to be properly located, at a higher
“level of abstraction”, so to speak.

The notes summarized here are meant to suggest a possible way of revising the
traditional [= post-{Frege, Hilbert, Gentzen}] picture of the facts.4

1. Categories of objects. Logics as equational proof-theories. Beside individual terms
and formulas, we construct first-order formal systems (“languages”) with an addition-
al “syntactic” category: the proof-terms . The intended meaning of a proof-formalism
is given by the propositions-as-types isomorphism [H. B. Curry, C. A. Meredith,

4The somewhat older idea of a “general proof-theory” [D. Prawitz] won’t perfectly cover the
outcome, because the enterprise is – prima facie, at least – not a philosophical one. Actually, in recent
times, some philosophers used to discuss closely related matters under the somewhat misleading rubric
“meaning theory (for the logical operations)”, thought of as a part of the philosophy of language. Still,
the “linguistic” import of these topics is rather minimal, and Brouwer was right, in a sense, to fight
against and discard this old – bi-millenial, in fact – illusion. Since, in view of the Hilbert tradition,
the term “proof theory” [“reductive” sense] looks rather compromised by now (pace Kreisel), this
area of investigation – making up, in a sense, “the core of logic”, qua mathematical theory of proofs –
appears to be in need for a right label. Our obvious ideological debts go back to L. E. J. Brouwer, A.
Heyting and A. N. Kolmogorov (whence “BHK”). Technically , we improve on the pioneering work
of Dag Prawitz [Ph D Diss., University of Stockholm 1965], exploiting also – among other things –
deep intuitions of V. I. Glivenko (1928-1929) on the nature of proving in classical logic [sic] (whence,
somehow, “beyond”). The “elementary” part of the discussion – as seen from the point of view of the
worker in (typed) λ-calculus – appears in a forthcoming monograph of the author, on the equational
theory of classical proofs. A larger body of facts (to be catalogued under the “right label” we are
still looking for) will be surveyed next.
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H. Läuchli, D. S. Scott, W. A. Howard, etc.]: the propositions are the “types” of
proofs (proof-classifiers).

A category of objects is (analogous to) a constructive set (à la Errett W. Bishop or
Per Martin-Löf). In intuitionistic/constructive mathematics, the proofs (traditionally:
“derivations”) make up a category of abstract objects. In this sense, understanding
proofs would require

1◦ (generic) means to refer to arbitrary objects of the category (proof-variables ,
proof-terms) and

2◦ identity-criteria for these objects.

The proofs of a first-order logic L (containing the so-called “positive” implication)
can be described via an equational theory λ(L), viz. a typed [= “stratified”] λ-calculus,
extending the ordinary typed λ-calculus λτ . So far, this procedure has been known
to apply only to the first-order intuitionistic logic HQ and some derivatives, as ob-
tained by adding, e.g., [propositional] quantifiers to the propositional fragment of HQ
or higher-order classifiers (“universes”). As applied to HQ, this is the essence of the
so-called “BHK”-interpretation [“Brouwer-Heyting-Kolmogorov”] of the intuitionis-
tic proof-operations [cf., e.g., A. S. Troelstra & D. van Dalen Constructivism in
Mathematics, Amsterdam 1988]. We can extend this technique “beyond BHK”, to
classical first-order logic CQ, modal logics contained in Lewis’ [first-order] S5, various
intensional logics sharing genuinely classical [= “non-intuitionistic”] features, etc. [see
footnote 4, above].
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2. Which proofs are “reliable” within the classical proof-world? Here, we examine the
equational proof-theory of the first-order intuitionistic logic [“the Heyting calculus”]
as a subsystem of classical proofs .

In other words, we ask rather, in “positive” terms: what is a “reliable” proof [for
Brouwer and Heyting , Dutch: betrouwbaar ], within the classical proof-world? Obvi-
ously, the extant (classical, non-intuitionistic, post-Gentzen) tradition in proof-theory
(Beweistheorie) has no means to answer this type of question. (In fact, the question
cannot be even formulated properly.)

For an intuitionist, a proof is an (abstract) object (of thought), occurring naturally
in the current (mathematical) practice, as a result of a systematic reflection on this
practice. As expected, intuitionistically, a proof-theory is a piece of (intuitionistic)
mathematics.

Putting aside the reputedly obscure ideological talk on “reliable” [read: “intu-
itionistic”] proofs as “constructions” in Brouwer, this view can be, mutatis mutandis ,
accommodated to the full proof-realm [of classical logic]: we can take it, indeed, as a
methodological guide in the reconstruction of [classical] logic [= proof-theory, in some
sense] as such.

3. [Classical ] reductio ad absurdum as an abstraction operator . For the first-
order classical logic CQ or its extensions, the required additions – to some background
knowledge of typed λ-calculus – presuppose the fact that [1◦] we are able to define,
e.g., a proof-operator [an abstractor, say, i.e., a proof -variable binding mechanism],
recording the genuinely Boolean uses of reductio ad absurdum and that [2◦] we can
describe its equational behavior. (There is a combinatory alternative to this, less
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transparent, however.)
This operator points out to a new abstraction operation (here: the γ-abstraction):

intuitively, it allows to conclude “positively” to the fact that a proposition expressed
by a formula A has a proof [γx:¬A.e[[x]], say] from the fact that a proof [e[[x]]] of a
contradiction ⊥ [= falsum, absurdum] has been obtained from the [“negative”] as-
sumption that there is an arbitrary proof [x] of ¬A. (Everywhere here, negation ¬ is
supposed to be understood inferentially [¬A ≡df A → ⊥].)

The general concept disclosed is that of a [typed ] λγ-theory [= Post-consistent
extension of λτ ]. In particular, the proof-theory of the first-order classical logic CQ
can be formulated as a typed λ-calculus λ(CQ).

We build on a typed λ-calculus λπ!, which is familiar from the Automath literature
and Martin-Löf’s type-theory: beside the usual typed abstractions and applications,
λπ! has type-products [represented by conjunctions] with an extensional pairing [“sur-
jective pairing”] and is augmented by first-order abstractors and applications associat-
ed to first-order products of families of types [represented by universal quantifications].
In fact, λπ! is, more or less, the “pure” part of an Automath-system, proposed by
Jeffrey Zucker in 1975. Proof-theoretically, it describes also the proof-behavior of the
[⊥,→,∧,∀]-fragment of Johansson’s Minimalkalkül . The (typed) calculus λπ! is known
to be Post-consistent [qua equational theory].

4. λγ(0,&)CQ: the [“actualistic”] proof-theory of first-order classical logic. The most
economical formulation for a λ(CQ)-theory is likely a calculus λγ0CQ, which extends
properly λπ!, by primitive γ-abstractions γx:¬A.e[[x]], where A is atomic (“prime”),
subjected to the obvious proof-term stratification rule:
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(→iγ): Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γx:¬A.e[[x]] : A,

for any assumption-set Γ, and – ignoring γ-congruence – only two equational postu-
lates, stating, resp.

[η → γ]: γ-extensionality , i.e., unicity of the γ-behavior relative to the usual typed
applications [= uses of modus ponens ], [formally, assumming stratifiability on both
sides, one has a reversal of the usual η-rule:

γx:¬A.x(f) = f, provided f does not depend on x], and

[
∮

γ]: γ-diagonalization, allowing to eliminate specific uses of reductio ad absurdum
occurring within the scope of [“inside”] a proof by reductio “of the same type”, so to
speak. [Assumming stratifiability on both sides, this reads, formally:

γx:¬A.f[[x]](x(γy:¬A.e[[x,y]])) = γz:¬A.f[[z]](e[[z,z]]),

where the proof-term e[[z,z]] is obtained from e[[x,y]] by identifying the displayed proof-
variables [x ≡ y ≡ z]. Intuitively, a proof represented by a proof-term of the form

γx:¬A.f[[x]](x(γy:¬A.e[[x,y]]))

has, indeed, the character of a slightly sophisticated “proof-détour”, since γ plays,
classicaly, the rôle of an “introduction” rule, rather than that of an “elimination”.
However, the “introduction-elimination” dichotomy applies properly only to Mini-
malkalkül -like systems of rules/proof-operators.]

Note that A is supposed to be “prime”, in both [η → γ] and [
∮

γ].5

5For readers familiar with the proof-system of the Heyting first-order logic, the γ-diagonalization
postulate must be also reminiscent of the Heyting “commuting conversions”. Indeed, the “selectors”
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The “complex” uses of reductio [γ-abstractions γx:¬A.e[[x]], where A ≡ ⊥ or a
complex formula] can be then introduced by an inductive definition.

The full theory λγ&CQ, obtained by using arbitrary typed γ-terms as primitives,
and by replacing the inductive conditions ([γ⊥], [γ→], [γ∧], [γ∀]) by obvious postulates
is (stratification resp. equationally) equivalent to λγ0CQ.6

We can show Cons(λγ0CQ), i.e., Post-consistency for λγ0CQ [= proof consistency
for first-order classical logic], by extending the kernel of the “negative” translation of
V. I. Glivenko [Acad. Royale de Belgique, Bull. Cl. Sci. (5) 15, 1928, pp.
225–228] to the proof(-term)s of λγ0CQ. The outcome is an effective (1–1) translation
from λγ0CQ to its γ-free fragment λπ!, known to be Post-consistent.7 In particular,
the procedure – described on half a page – is also admissible intuitionistically: it
supplies a “dictionary” for proof-operations that do not make sense, in general, in the
intuitionist practice.

What is not intelligible intuitionistically is just the intuitive interpretation of the
abstract γ-operations as logical proof-operations : indeed, the abstraction operator
corresponding, classically, to reductio ad absurdum has only local – “finitary”, so to
speak – meaning in terms of HQ-proofs. Technically, for each [⊥,→,∧,∨,∀,∃]-formula
A and any proof f such that f proves intuitionistically ¬A ∨ A, there is an abstraction

associated to the intuitionistic ∨ and ∃ are analogous to appropriate uses of γ. In general, the Heyting
proof-calculus would allow only “cancelling” γ-abstractions, of the form ωA(e) ≡df γx:¬A.e, where
e : ⊥ does not “depend on” the assumption [x:¬A], so that this structural analogy is useful only in
a genuinely Boolean setting.

6The “recursive eliminability” of γ was, in fact, known to Dag Prawitz (1965), although not in
type-theoretic – or λγ-calculus – form. This does not depend on γ-diagonalization, by the way.

7The result can be also obtained by a type-free argument.
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operation γf , depending on f , which can be shown to share relevant properties with
the “global” γ-abstractor. Beyond the – intuitionistically – recognizable “local” /
“finitary” information, the classical γ-abstractor attempts to supply “global” informa-
tion about proofs, acting, qua information-processing agent, like a highly predictable
– although intuitionistically “unreliable” – oracle.

The calculus λγ&CQ has [∨,∃]-“type-constructors” defined via the usual Ock-
ham/De Morgan transformations [A∨B ≡df ¬(¬A∧¬B), with ∃ “generalizing” ∨, as
expected]. These definitions admit of associated “negative” proof-operators (Boolean
“injections” and Boolean “selectors”), with an appropriate extensional behavior. The
latter appear to be more general than the Johansson-Heyting “injections” and “selec-
tors”, familiar from the literature on constructive type theories.

5. The [full ] Heyting calculus is a proper fragment of λγ&CQ. The bulk of the
work is devoted to the derivation of the stratification and equational behavior of the
Minimalkalkül resp. Heyting proof-operators associated to [⊥,∨,∃] in terms of the
“negative” Boolean analogues. The full Heyting first-order proof-calculus λHQ, with
“⊥-conversions” [ex-falso-rules, here ω-rules ] and so-called “commuting conversions”
is shown, finally, to admit of a definitional embedding into the classical theory λγ&CQ.

The simulation of the intuitionistic proof-operations in terms of λγ&CQ proof-
operations is an effective translation. This yields Cons(λHQ), too.

Ultimately, we obtain an effective translation of λHQ into λπ!, i.e., into a proper
fragment of it, known to be consistent by intuitionistically acceptable means.

In fact, λπ! and λτ can be shown to be equi-consistent by simple translations, so
that Cons(λHQ) amounts to Cons(λτ ), i.e., the problem is reduced to a question
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about the ordinary typed λ-calculus.8 Existing alternatives of showing Cons(λHQ)
recommend either a confluence argument or a model-theoretic approach. The former
involves hundreds of separate cases to check, whereas the latter has meager chances
of becoming intuitionistically intelligible.

On the intuitive level, λγ&CQ appears, in fact, as a kind of “asymptotic” extension
of the first-order Heyting proof-calculus λHQ, and corresponds – more or less – to an
“actualistic” interpretation of the classical logic proof-operations [where “actualistic”
= Gentzen’s “an sich” in, e.g., Math. Annalen 112, 1936].

6. The logic of “complete refutability”. In analogy with λHQ, one can isolate – with-
in λγ&CQ – the equational proof-theory of the first-order logic of “complete refutabil-
ity” DQ, also known as a “logic of strict negation” [= Curry’s logic LD, in JSL 17,
1952, pp. 35–42]. The interest in DQ is in the fact that its inferential [⊥,→] part is,
in a sense, “non-Brouwerian” and – inside CQ – complementary to the inferential part
of HQ. Indeed, DQ and HQ disagree mainly on negation: DQ allows “the Law of
Clavius” [consequentia mirabilis : ¬A → A → A], which is, clearly, not HQ-derivable,

8Note that Cons(λHQ) is not implied by the corresponding result for Martin-Löf’s (1984) con-
structive type theory. Actually, the Heyting calculus is not contained equationally in any one of
Martin-Löf’s type theories, because of the “⊥-conversions” and the “commuting conversions”, which
are absent from the latter systems, even if higher order classifiers [= “universes”] and corresponding
closure conditions are assumed. Equationally, indeed, Martin-Löf’s type systems are just higher-order
variations on the Minimalkalkül ; this corresponds, in fact, to the intended meaning of these formal-
izations, viz. that of capturing – at a formal level – Bishop’s point of view [BCM], not Brouwer’s
[BI].
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and discards as incorrect (“non-strict”) the intuitionistically unobjectionable ex falso
quodlibet [⊥ → A].

On a proof-level, behind the “Rule of Clavius” ¬A |= A ⇒ |= A, there is a specific
inferential proof-operation [i.e., an abstraction operator] ε, say, which is definable
classically, in λγ&CQ, by εx:¬A.a[[x]]≡df γx:¬A.x(a[[x]]). So, the type-theoretic variant
of this – strange, old – proof-pattern [cf. Euclid Elementa IX.12, Christoph Klau (=
Clavius) Opera mathematica I, Mayence 1611, ad locum, etc.] is:

Γ[x:¬A] ` a[[x]] : A ⇒ Γ ` εx:¬A.a[[x]] : A.

Now, the ω’s mentioned above [that is: the uses of ex falso quodlibet : ωA(e) ≡ γx:¬A.e,
with x not free in e], and the “Clavian” abstractions ε are “complementary” with-
in/inside λγ&CQ, in the sense that they can be put together, in order to make up [the
effect of] a use of reductio ad absurdum [γ]. On a provability level, this is well-known.
Formally, one can define, in λγ&CQ,

γ◦x:¬A.e[[x]] ≡df εx:¬A.ωA(e[[x]]),

on a proof-(term)-level, and, in view of (a special case of) [
∮

γ], λγ&CQ is able to iden-
tify the new γ◦-abstraction with the old one. This can be generalized to a hierarchy of
triples [γ[n],ε[n],ω[n]], (n ≥ 0), that are collapsed back to [γ,ε,ω] by γ-diagonalization.
Without [

∮
γ] or with assumptions weaker than [

∮
γ], one can distinguish a hierarchy

of subsystems of λγ&CQ, that “prove the same theorems” [i.e., share the same strat-
ification criteria for proof-terms], but are still equationally distinct (using different
identity-criteria).

The addition of the ε-abstraction to the ordinary typed λ-calculus λτ yields the
proof-theory of the inferential [⊥,→] part of DQ. The “positive” [→,∧,∀] part of DQ
is like in CQ and in Minimalkalkül , whereas the “negative” [∨,∃]-proof-operators of
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DQ are slight generalizations of their Minimalkalkül and intuitionistic analogues. In
the end, one can reconstruct proof-theoretically DQ as a typed λ-calculus, λDQ say,
that can be embedded into λγ&CQ, as in the case of the Heyting proof-calculus. A
complete description of λDQ is tedious (although it has no “⊥-conversions” - since it
has no ω’s - it requires more “commuting conversions” than HQ): we give only the
information that has been estimated useful in view of retrieving the basic ingredients.

7. Post-completeness? Internal evidence (as, e.g., among other things, the fact that
λγ&CQ is complete relative to the Heyting calculus, that it collapses many distinc-
tions, like those among [γ,ε,ω]-triples, etc.) suggests the conjecture that λγ&CQ is
also Post-complete. That is: if CQ |= A one cannot add a new closed equation a1 = a2,
where a1, a2 are proofs of A, without loosing [Post-] consistency for the resulting ex-
tension. This is a typed analogue of a situation obtaining for the extensional type-free
λ-calculus , where we cannot identify consistently two arbitrary normal forms [Corra-
do Böhm Pubbl. IAC (Rome) 696, 1968]. Here, the normal[izabi]lity requirement is
already insured by stratifiability.9

9In an appendix , we pay attention to assorted topics, somewhat loosely related to the main theme:
the Gentzen L-systems, the concept of a proof-transformation for CQ, and the “double negation”
interpretations of CQ into HQ, along the Kolmogorov (1925) translation-pattern.
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