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équivalences

Nijmegen

The Netherlands

2016

§1 Sometime during 1926, while still an undergraduate mathematics stu-
dent at the Warsaw University, Stanis law Jaśkowski (1906–1965) presented,
in the local (i.e., Warsaw) Logic Seminar of his teacher, Jan  Lukasiewicz
(1878–1956), a ‘natural deduction’ formulation of classical (two-valued) propo-
sitional (including propositional quantifiers), first and second-order logic.

Let us pause, first, on historico-bibliographical details. Apparently, the
work was done at the instigation of Jan  Lukasiewicz1. As to terminology, the
phrase ‘natural deduction’ (German: ‘natürliche Schliessen’), still in common
use in logic today, appeared in print first in Gentzen (1934–1935), although
the idea was already clear in the motivation of Jaśkowski’s research: he
meant, on the authority of his teacher, to design a logic of rules (a ‘Regel-
logik’, so to speak), close to the ‘natural’ mathematical reasoning, as opposed
to the ‘Satzlogik’ of  Lukasiewicz himself, i.e., an axiomatic presentation – as
in the lectures of  Lukasiewicz (1929) –, in the footsteps of Frege (1879), Peirce
(1885), Russell (1906), and Whitehead & Russell’s ‘Principia Mathematica’
(1910–1913).2

∗This is a revision of a draft dated Nijmegen, October 9, 2015, based on
previous work. In view of my title, I will adopt, throughout in these notes,
the  Lukasiewicz notational habits.
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The phrase ‘deduction theory’ [Polish: ‘teorja dedukcji’] was, initially,
 Lukasiewicz’s own term for ‘propositional logic’, including, possibly, propo-
sitional and / or first- and second-order quantifiers). Cf. the introductory
lines and other occasional side-remarks appearing in Jaśkowski (1934).3

As to publication matters, Jaśkowski’s results were promptly announced,
as Jaśkowski (1927), at the First Congress of the Polish Mathematicians,
held in Lvov, September 7–10, 1927. See, e.g., the Congress [PPZM] Pro-
ceedings (1929) and, specifically, the references of Lindenbaum (1927). Due
to circumstances unknown to me (as well as to other, better informed people,
apparently), the final paper appeared actually in print only eight years later
(in a projected logic collection edited by Jan  Lukasiewicz himself, later to be-
come an international logic journal), as Jaśkowski (1934), more or less simul-
taneously with Gerhard Gentzen’s Göttingen Inauguraldissertation, Gentzen
(1934–1935).

Before going into the proper details of the subject announced in the title,
a few more technical and historical remarks on the material available in print
– or otherwise – to Jaśkowski, around 1926, are in order.

Modern logic – also called ‘mathematical’ or ‘symbolic’ – was (re-) born
by the end of the XIX-th century (around 1879, in print, with an entertaining
sequel, in 1893), in two instalments, authored by Gottlob Frege, viz. Frege
(1879) [BS] and Frege (1893) [GGA:1]. There was an intermediate episode,
due to Charles S. Peirce, Peirce (1885) – that Frege ignored –, equally worth
noting, which, although sketchy, was, in some respects, conceptually superior
to Frege’s BS-account. Both Frege and Peirce had a venerable predecessor,
more than twenty one centuries before they were born, in the work of Chrysip-
pus of Sol[o]i (this was an obscure place in Cylicia Campestris, nowadays in
modern Turkey), a Phoenician emigrant to Athens, the father of Stoic logic
and the grand-father of [classical] logic tout court. The latter (historical)
fact was first noted by Jan  Lukasiewicz, sometime during the early 1920.4

A less known (historical) fact is that Frege came out with two ‘logics’, not
with a single one: a Satzlogik (1879), and a Regellogik (1893). Both were
‘axiomatic’, by modern standards. The latter one was meant to be closer
to actual ‘mathematical thinking’ (a kind of formal counterpart of ‘natural’
deduction, as occurring in mathematical texts), and was vastly anticipating,
among other things, Gentzen (1934–1935), for instance.

The other relevant (historical) fact is that neither Gentzen, nor any other
Göttinger – David Hilbert (1862–1943) or Paul Hertz (1880–1940), for that
matter5 – had ever read Frege’s GGA (1893) [sic].
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In this matter, I cannot, however, speak for the Lvov-Warsaw Poles –
those active in logic before cca 1935 – because we lack the right kind of
(historical) documentation. Both  Lukasiewicz (1929) and Jaśkowski (1934)
mention only Frege’s axiomatic system of BS, while, curiously enough, the
young Alfred Tajtelbaum [aka Tarski] (1901–1983) does not refer to Frege’s
‘logics’ at all.6

On the other hand, the main trouble with Frege (1879, 1893) was in
the fact he did not recognise the general concept of a ‘rule of inference’.
Specifically, with [material] implication, [classical] negation and the [classical]
universal quantifier as primitives, he only acknowledged ‘flat’ rules (more or
less like the algebraic operations), of the form:

([) ` α1, ..., ` αn ⇒ ` β,

rejecting, implicitly, the (old-fashioned) idea of entailment (= finite sequence
of propositions, with exactly one being tagged qua ‘conclusion’):

(`) α1, ..., αn ` β

as a legitimate – and otherwise essential – logic concept.7

The young Bertrand Russell (1872–1970) – the only (more or less com-
petent) person who did actually read Frege (1893) in the epoch8 – was less
interested in such absconse distinctions9, so he missed the point, as well, and
sticked to axiomatics, in the shadow of Frege (1879) and Peirce (1885)10.

As another aside, I was, so far, unable to date exactly the event as such,
in the moderns, viz. the identification of the concept of a general rule of
inference.11 The earliest date I am able to quote is 1921, when Alfred Tarski
(Leśniewski’s only PhD student) noticed the so-called ‘Deduction Theorem’
(DT)12, i.e., the implication-introduction rule of Gentzen (1934–1935), an
obvious case of ‘non-flat’ inferential rule, with an entailement (including ‘as-
sumptions’) as a premiss:

(DT) α ` β ⇒ ` Cαβ,

Certainly,  Lukasiewicz was aware of such details, if not in 1921, at least
sometime before 1926, when he assigned his [very] young student (Jaśkowski)
the home-work leading to Jaśkowski (1927, 1934). Anyway, the implication
int-elim rules (the ‘Deduction Theorem’ and the famous modus ponens /
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detachment rule) appear explicitly in Jaśkowski’s early home-work, and so,
a fortiori, in  Lukasiewicz’s Warsaw Seminar, sometime during 1926.13

Whence a question: ‘Why hasn’t Jan  Lukasiewicz solved the problem
[the one assigned to young Jaśkowski] himself – sometime before 1926 – and
presented the outcome is his famous lectures  Lukasiewicz (1929)?’ Because
he had at hand the (conceptual and technical) means to do it, anyway. Which
is what I mean to show next. In order to do this, in proper terms, I need
a conceptual revision of the received views on proving (in logic) and some
apropriate notation and terminology.

§2 Rules of inference as witness-operators. A typical case of the ‘flat’ rule
([) above is the modus ponens or the detachment rule, in logics with impli-
cation [here, C], either primitive or defined:

(.) ` Cαβ, ` α ⇒ ` β,

Now, in axiomatic presentations of a given logic (classical, two-valued
logic, for instance), the premisses αi (0 < i < n + 1) of a ‘flat’ rule of the
form ([) are taken to hold ‘unconditionally’, without further assumptions,
they are provable formulas (expressing propositions / propositional schemes),
‘theorems’ or ‘theses’ (in the jargon of the early Polish ‘school’); alternatively,
they are, semantically, true (or else two-valued ‘tautologies’, in the classical
case).

In fact, any particular axiomatics amounts to an inductive definition of
the predicate ‘provable’ (expressed notationally by `) applying to formulas
(expressing propositions or propositional schemes): the axioms are paradig-
matically provable (the basis of the induction), while any (primitive) ‘flat’
rule of inference carries this property – provability – from premisses to con-
clusion (inductive step).

As long as we have only primitive rules of the form ([) around, ‘proving
axiomatically’ amounts to a piece of algebraic notation: a ‘flat’ primitive
rule of inference with n premisses (n > 0) looks like a usual algebraic n-
ary operation14, whereupon a derivable rule of inference is just an explicit
definition of an operation in terms of ‘primitive’ operations (here, axioms
and primitive rules of inference).

‘Operations on what?’, one might wonder. A first – approximate – an-
swer could be: ‘On formulas.’.15 A slightly better one would amount to an
additional piece of formalism, to be justified, intuitively, as follows:
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Proving something – a proposition expressed by formula α, say – amounts
to providing a reason – or ‘grounds’ – for α, or else, like in court, to displaying
a witness a for α. Formal notation: ` a : α.

With this minimal formal equipment, in axiomatic presentations, the ax-
ioms are to be witnessed by primitive constants (possibly parametric, in the
case of axioms schemes), whence ‘witnessing’ a ‘flat’ rule of the form ([)
would amount to providing an operation (operator) [ and a piece of explicit
formal notation [(a1, ..., an), such that

[[] ` a1 : α1, ..., ` an : αn ⇒ ` [(a1, ..., an) : β;

so, in particular, ‘witnessing’ a ‘flat’ rule like modus ponens, for instance,
would consists of using a binary operation ., say, to the effect that

[.] ` f : Cαβ, ` a : α ⇒ ` (f . a) : β.

Summing up, a ‘flat’ rule of inference is just an algebraic operation, in
this view. Note, however, that, as long as we do not define explicitly the
‘operations’ [, we have only a witness notation, at most. In other words, in
order to have a witness theory – as a formal counterpart of (axiomatic) prov-
ing – we must be able to characterise the witness operations first. Usually,
we can do this, like in algebra, by equational conditions, expressing witness-
or proof-isomorphisms.

The general case is obtained from the ‘flat’ case by ‘parametrisation’ so to
speak, where the parameters are finite (possibly empty) sequences of formulas
(expressing propositions, resp. propositional schemes) Γi := [βi,1, ..., βi,mi

]
(0 < i < n+ 1, mi ≥ 0), resp. Γ := [β1, ..., βm] (m ≥ 0), called ‘assumption
contexts’ (alternatively: witness-contexts or proof-contexts). Every premiss
of a general rule is thus an entailment of the form Γi ` αi (0 < i < n + 1),
while the rule has a conclusion of the form Γ ` β, i.e., one has

([`) Γ1 ` α1, ..., Γn ` αn ⇒ Γ ` β,

with ‘witnessed’ counterpart of the form

[[`] Γ̂1 ` a1 : α1, ..., Γ̂n ` an : αn ⇒ Γ̂ ` b : β,

where Γ̂i := [xi,1 : βi,1, ..., xi,m : βi,mi
], the ‘witnessed’ counterpart of Γi (and

analogously for Γ̂ and Γ) contains ‘decorated – or typed – witness-variables’,
allowing us to manipulate the witness-contexts.16

In particular, in the limit case, a null-premiss rule of inference is just an
entailment (considered valid). Examples in point:
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[id] α ` α,

or more generally,

[prj] Γ ` αi, for Γ ≡ [α1, ..., αn], (0 < i < n+ 1),

[.] Cαβ, α ` β (modus ponens, viewed as a valid entailment),

etc., and analogously for the witnessed variants:

[id`] x : α ` x : α,

resp.

[prj`] Γ̂ ` xi : α, for Γ̂ ≡ [x1 : α1, ..., xn : αn], (0 < i < n+ 1),

[.`] z : Cαβ, x: α ` (z . x) : β.

Here, in [[`], the witness b, appearing in the conclusion, must be of the
form [(\1(a1),...,\n(an)), where the prefixes \i (0 < i < n+1) are either empty
(nil) or specific variable-binding operations, called ‘abstraction operators’,
acting on finite sequences ~xi ≡ [xi,1, ..., xi,mi

], (mi > 0), of pairwise distinct
witness-variables) and the associated ‘body’ ai. In each case, a witness-
variable is decorated (or ‘typed’) by an associated formula thereby witnessed
‘hypothetically’.

Of course, if every \-prefix is empty, we have a ‘flat’ rule, the ‘degenerated’
case. E.g., in particular, the most general forms of modus ponens, viewed as
a rule of inference, should be

[.`⊗] Γ̂ ` f : Cαβ, Γ̂ ` a : α ⇒ Γ̂ ` (f . a) : β [‘parametric’] or

[.`⊕] Γ̂1 ` f : Cαβ, Γ̂2 ` a : α⇒ Γ̂1, Γ̂2 ` (f . a) : β [‘cumulative’].

In general, however, a rule of inference can be arbitrarily complex, so that
the identification

(general) rule of inference = witness operator
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goes beyond the conventional views on ‘algebraic operators’.17 In order to
accomodate, formally, the terminology – and the notation – , one can use
the idea of a generic arity (gen-arity, for short), viewed as a finite sequence
of non-negative integers, to be associated to an arbirary operator, taken in
the new sense. In this setting, the algebraic [null-ary] constants would get
gen-arity nil [= the empty sequence], the usual n-ary algebraic operations
would get gen-arity [0, ..., 0] (n times 0, n > 0), the n-adic abstractors
would get gen-arity [n] (n > 0), so that the monadic λ-abstractor, as well
as the usual quantifiers, for that matter, must have gen-arity [1], the dyadic
abstractor split [

∫
], mentioned incidentally below, has gen-arity [2], and so

on. In particular, the ‘mixed’ operators (gen-arity [k1, ..., kn], ki > 0 ) can
be handled as ‘flat’ (algebraic) n-ary operations acting on ki-adic abstractors
(0 < i < n+ 1).

In practice, however, we rarely, if ever, encounter complex rules corre-
sponding to ‘mixed’ operators; we are normally confronted with ‘flat’ (ordi-
nary algebraic) operators or with n-adic abstractors with n := 1,2 (operators
of gen-arity [1] or [2]), at most, so that, in the end, the talk about gen-arities
amounts to a piece of empty generality.18

§3 Essentially, the  Lukasiewicz Warsaw Lectures of 1928–1929,  Lukasiewicz
(1929), contain a very detailed axiomatic presentation of

(1) [classical] propositional logic, based on the signature [N,C] (classical
negation and material implication, in  Lukasiewicz notation)19, and

(2) a mild – yet very clean – version of the ‘extended propositional [clas-
sical] logic’, i.e., the [classical] propositional logic with propositional quanti-
fiers, à la Peirce (1885), Russell (1906) and Tarski (doctoral diss., Warsaw
1923, under Leśniewski), or else Leśniewski’s ‘protothetic’, for that matter.20

Now, except for a minor detail, the latter one is not more than the former,
because we can define explicitly the [classical] propositional quantifiers in
terms of [classical] connectives K [and], A [or] (in  Lukasiewicz notation), and
propositional constants v [verum] and f [falsum], anyway (just ‘truth value
quantifiers’, as Nuel Benap Jr would have had them21).

The ‘minor detail’ refers, here, to the fact that the primitive [N,C]-
signature is not functionally complete: we cannot obtain the propositional
constants v and f from [N,C] alone. This does not affect our discussion of
(2) below, as the signature [N,C,Π], with Π for the universal propositional
quantifier, is functionally complete and even redundant, since one can define
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f and N à la Peirce (1885) by f := Πp.p and Nα := Cαf, resp.22 In an ax-
iomatic quantifier-free setting – as in  Lukasiewicz (1929), Chapter II – the
absence of the propositional constants might, however, affect the translation
of the axioms in terms of rules of inference (and conversely). The point is
that we need a primitive f [falsum] in order to express something as simple as
the ‘law of (non-) contradiction’, for instance, in inferential (entailment-like)
terms.23 By adjoining a falsum-constant f to [N,C], the  Lukasiewicz original
axiom system is, however, incomplete as it stands. We cannot even prove,
from the  Lukasiewicz axioms, the ‘thesis’ ` v [≡ Nf], for instance.24

Recall that the  Lukasiewicz (1929) quantifier-free axioms, with modus
ponens and substitution as only ‘rules of inference’, are (in  Lukasiewicz –
‘Polish’ – spelling):

` CB[p,q,r] := 1 : CCpqCCqrCpr

[transitivity of implication: ‘suffixing’] - axiom in Peirce (1885)

` E[p] := 2 : CCNppp

[the consequentia mirabilis of Gerolamo Cardano (1570) or the
Law of Clavius, viewed as a ‘thesis’]

` O[p,q] := 3 : CpCNpq

[ex contradictione quodlibet, ‘explosion’].

To this team, we add, for reasons discussed above:

` Ω : v.

§3.1 Proof-combinators. Taking CB, E and O – with the appropriate
propositional parameters (here: [p,q,r,] [p], and [p,q], resp.) –, as well as Ω,
in guise of primitive ‘witnesses’ for the corresponding axioms, detachment
/ modus ponens can be viewed as a binary (algebraic) operation D, from
‘detachment’ (to be defined properly – i.e., equationally – later on) acting on
witnesses, to the effect that:

(. = modus ponens) if f is a witness for Cαβ and a is a witness
for α, then Dfa is a witness for β.
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We write, for convenience, f(a) = (f . a) := Dfa. This is to be un-
derstood modulo arbitrary uniform substitutions, with the proviso that one
must take most general substitutions into account (here, substitutions are
endomorphisms of the corresponding [free] algebra).25

For the record, the formal grammar (for formulas, resp. witness terms
[proof-terms or w-terms, for short]) is:

propositional variables :: p, q, r, ...

formulas :: α, β := p | Nα | Cαβ

w-variables :: x, y, z, ...

w-terms :: a,b,c,d,e,f := x | Ω | CB | E | O | c.a.

Where α is a formula and a is a w-term, we write, as ever, ` a : α, for
the fact that a is a witness (actually, a w-term) for α.

So, we have, in particular, derived rules (here, definable witness-operators):

` g ◦ f := CB[p,q,r](f)(g) : Cpr, if ` f : Cpq and ` g : Cqr,

` E[p](f) : p, if ` f : CNpp,

` O[p](a)(c) : q, if ` a : p and ` b : Np.

Examples, ignoring propositional parameters on witnesses, as well as ex-
plicit substitutions26:

` 4 := CB . CB : CCCCqrCprsCCpqs

` 5 := 4 . 4 = (CB . CB) . (CB . CB) : CCpCqrCCsqCpCsr

` 6 := 4 . 1 = (CB . CB) . CB : [exercise]

` 7 := 5 . 6 : [exercise]

` 8 := 7 . 1 : [exercise]

` 9 := 1 . 3 = CB . O : [exercise]

...

` I := 16 = 9 . 2 = (CB . O) . E : Cpp - axiom in Peirce (1885)

and so on.
Further,  Lukasiewicz meticulously obtained
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` K := 18 : CqCqp [‘the law of simplification’] –

axiom in Frege BS (1856)

` CI := 20 : CpCCpqq

[‘assertion’ or internalised modus ponens]

` C := 21 : CCpCqrCCqCpr

[‘the law of commutation’] - axiom in Frege BS, as well as in Peirce
(1885) [Note by  Lukasiewicz (cca 1925): superfluous in Frege BS,
it can be already obtained from K and S.]

` B := 22 = C . CB : CCqrCCpqCpr

[transitivity of implication: ‘prefixing’]

` P := 24 : CCCpqpp

[‘the Law of Peirce’] - axiom in Peirce (1885)

`W := 30 : CCpCpqCpq

[‘Hilbert’ or ‘contraction’]

` S := 35 : CCpCqrCCpqCpr

[‘Frege’ or ‘selfdistribution on the major’] - axiom in Frege BS

` ∆ := 39 : CNNpp

[‘law of double negation’ (elim)] - axiom in Frege BS

` ∇ := 40 : CpNNp

[‘law of double negation’ (intro)] - axiom in Frege BS

...

[46–49: ‘the laws of transposition’ (or ‘contraposition’)]

` 46 : CCpqCNqNp

` 47 : CCpNqCqCNp - axiom in Frege BS

` 48 : CCNpqCNqp

` 49 : CCNpNqCqp

etc.
This amounts to a ‘typed’ (stratified, decorated) combinatory logic no-

tation, where one manipulates formulas in guise of so-called principal type
schemes.27
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Now, as Tarski should have known (in 1921), in presence of modus ponens,
the Deduction Theorem (DT) – or implication-introduction – can be obtained
from K and S alone. This yields the λ-calculus counterpart of the same story.

§3.2 (DT) and the λ-abstraction-algorithm. I have argued at length else-
where that Tarski must have been, likely, familiar with some form of (typed)
λ-calculus – or (typed) combinatory logic or both – during the early 1920,
knowledge that enabled him to prove some tricky axiomatizability results
around 1925.28

Indeed, there is, essentially, a single way of proving (DT): the proof
amounts to a simple inductive argument.

The reasoning can be repeated in any (propositional) logic – with substi-
tution and modus ponens, as only primitive rules of inference – that contains
the (witnessed) ‘theses’:

(K) ` K[p.q] : CpCqp, and

(S) ` S[p,q,r] : CCpCqrCCpqCpr.

Note first that, in such cases, one has, as derived rules:

[K] Γ̂ ` f : p ⇒ Γ̂ ` K[p,q](f) : Cqp, and

[S] Γ̂ ` f : CpCqr, Γ̂ ` g : Cpq ⇒ Γ̂ ` f � g : Cpr,

where f � g := S[p,q,r](f)(g), as well as the (witnessed) ‘thesis’:

(I) ` I[p] : Cpp

[ignoring propositional parameters, the latter is available as S(K)(K)].
Suppose that we have obtained a proof b[x] of β from the assumption

that we have a proof x of α (so that b[x] depends possibly on [x:α]). Then
(DT) states that we must have a proof λx:α.b[x] := λ([x:α](b[x])) of Cαβ,
that does not depend on the proof [x:α], ceteris paribus.29 That is to say,
formally,

(λ) Γ̂ ` λx:α.b[x] : Cαβ, if Γ̂, [x:α] ` b[x] : β,

for an appropriate assumption-context Γ̂, as a parameter in the argument.
The induction pays attention to the form (‘structure’) of b[x]. To save

repetitions, set e ≡ λx:α.b[x]. There are only three cases to examine:
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(1) b[x] ≡ [x : α]; so α ≡ β; set e := I[α] : Cαα;

(2) b[x] : β does not actually depend on [x : α]; set e := K[β,α](b) : Cαβ;

(3) b[x] ≡ (f . g) : β; where f : Cα′β and a : α′; then the (IH) guarantees
f̂ := (λx:α.f) : CαCα′β and â := (λx:α.a) : Cαα′; set e := f̂ � â :
Cαβ.30

§3.3 An extended λ-calculus. As in (decorated / ‘typed’) λ-calculus, we
can thus write (ignoring everywhere proof-context parametrisations):

(λ) ` λx:p.b[x] : Cpq, if [x:p] ` b[x] : q.

As one might already guess, this makes up the first step in a would-
be attempt meant to replace the  Lukasiewicz axioms – i.e., the primitive
combinator team {CB, E, O} – together with Ω, on the signature [f, N,C],
by appropriate witness operators (rules of inference).

Set now

(ε) ` εx:Np.a[x] := E(λx:Np.a[x]) : p, if [x:Np] ` a[x] : p.

The latter derived rule (definable witness-operator) is the consequentia
mirabilis of Gerolamo Cardano (1501–1576) or the Rule of Clavius, viewed
as a single-premiss rule of inference31.

As announced before, we adjoin the propositional constant f (falsum),
with v := Nf (verum), and a single additional (witness) axiom:

(Ω) ` Ω : v

and set32

($) ` $[p](e) := O[f,p](e)(Ω) : p, if ` e : f,

with, finally

(?) ` c ? a := O[p,f](a)(c) : f, if ` a : p, and ` c : Np

[‘inner cut’ or the ‘rule / law of (non-) contradiction’].

Conversely, E and O can be obtained as

12



(E) ` E[p] := λf:CNpp.εx:Np.(f?x) : CCNppp,

(O) ` O[p,q] :=λx:p.λy:Np.$[q](y?x) : CCpCNpq.

As is well-known, the rules (λ), (.), (ε), ($), and (?), with the additional
axiom (Ω), suffice to yield full classical [propositional] logic.33

On the other hand, if (?) is present, the rules (ε) and ($) of the [f,N,C]-
signature, taken together, are equivalent, in this context, to reductio ad
absurdum, (∂), viewed as a single-premiss rule

(∂) ` ∂x:Np.e[x] : p, if [x:Np] ` e[x] : f.

Indeed, one has

(∂) ` ∂x:Np.e[x] := εx:Np.$[p](e[x]) : p, if [x:Np] ` e[x] : f,

and, conversely,

(ε) ` εx:Np.a[x] := ∂x:Np.(x?a[x]) : p, if [x:Np] ` a[x] : p, and

($) ` $[p](e) := ∂x:Np.e, if [x:Np] ` e : f (x not free in e)34,

so that, finally, classical [propositional] logic can be based on

(1) the axiom (Ω), and the four rules:

(2) (λ) [the ‘Deduction Theorem’, implication-introduction],

(3) (.) [modus ponens, implication-elimination],

(4) (∂) [reductio ad absurdum], and

(5) (?) [‘the law of (non-) contradiction’].

The axiom is, in fact, redundant, since, in this case, one can define ex-
plicitly:

(df Ω) ` Ω := ∂x:Nv.∂y:v.(x?y) : v.
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We shall keep, however, Ω around for a while, mainly for the sake of
comparison with the Jaśkowski (1934) version of ‘natural deduction’.

The ‘natural deduction’ system above is easily seen to be equivalent to the
axiomatics of  Lukasiewicz (1929), modified as above such as to fit the prim-
itive [f,N,C]-signature. As the rules have been already seen to be derivable
from the axioms, this amounts to writing down the explicit definitions of the
witnesses (here, combinators) CB, E, and O in terms of the proof-operators
contained in the ‘basis’ {λ, ., ∂, ?}.

The corresponding (extended) λ-calculus is discussed next. It turns out
that – if we forget about the constant Ω – one can even formulate it in a
decoration-free (‘type-free’) setting. This allows us establishing (its Post-)
consistency in a straightforward way, using only some very basic λ-calculus
facts.

§4 On the primitive [f,N,C]-signature, the minimal setting above – consist-
ing of (Ω) [otherwise redundant], (λ) [implication-introduction], (.) [impli-
cation-elimination], (∂) [reductio ad absurdum], and (?) [‘the law of (non-)
contradiction’] – can be viewed as an extension of the basic (‘simple’) typed
λ-calculus λ[C], obtained by ‘replicating’ its pure (λ)-(.)-part.

Formally, the decoration-free (‘type-free’) syntax of the resulting λ∂-
calculus – λ∂(Ω), say – is given by:

witness-variables :: x, y, z, ...

witness terms :: a,b,c,d,e,f := x | λx.b | f.a | ∂x.e | c?a.

In the resulting equational system, one has the usual βη-conditions for
(λ) and (.) [decoration-free spelling]:

(βλ) ` (λx.b[x]) . a = b[x:=a],

(ηλ) ` λx.(c . x) = c (x not free in c),

as well as the analogous βη-conditions for (∂) and (?):

(β∂) ` c ? (∂z.e[z]) = e[z:=c],

(η∂) ` ∂z.(z?a) = a (z not free in a),
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together with the expected rules of monotony (compatibility of equality –
here, conversion – with the operations).

This extension of pure λ can be easily seen to be consistent by interpreting
it in [type-free] λπ-calculus, λπ, for instance.35 Alternatively, one can choose
to equip the resulting calculus with an appropriate notion of reduction and
establish confluence [via a Church-Rosser theorem] first.

The intended decoration (typing) is given by the conditions (λ), (.), (∂)
and (?). In view of the above, if considered as a (decorated / ‘typed’) λ-
theory, the outcome – the λ∂-calculus λ∂[f,N,C] – is a witness theory for
classical logic.

This yields the simplest Curry-Howard correspondence for (propositional)
classical logic I know of.36

§5 In his (1927, 1934), Jaśkowski chose to hide the applications of the
‘inner cut’ (?) – which, as noted above, would have required the additional
propositional atom f (falsum) – and expressed reductio ad absurdum in the
form of a more complex rule, viz. by the Medieval ex contradictione quodlibet
[‘explosion’] principle, viewed as a rule of inference:

(χ) [z:Np] ` c[z] : Nq, [z:Np] ` a[z] : q ⇒ ` χz:Np.(c,a) : p.

Upon adjoining the atom f and the ‘hidden’ rule (?), the complex Jaś-
kowski rule (χ) can be obtained as:

(χ) ` χz:Np.(c,a) := ∂z:Np.(c?a) : p,

if [z:Np] ` c : Nq, and [z:Np] ` a : q,

while, conversely, one can have:

(∂) ` ∂z:Np.e[z] := χz.(Ω, e[z]) : p, if [z:Np] ` e[z] : f,

in terms of (χ) and (Ω).
The ‘hidden’ rule (?), however, can be obtained explicitly from Jaśkowski’s

(χ) only by an ad hoc contextual artifice, setting, e.g.,

(?) ` c ? a := χz:v.(c,a) : f, if ` c : Np, and ` a : p.37

As an aside, on ultimate formal grounds, I should have rather written
down the Jaśkowski rule (χ), as:
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[x:Np] ` c[x] : Nq; [y:Np] ` a[y] : q⇒ ` χ(x,y:Np).(c[x],a[y]) : p,

but, as the two premisses of (χ) are independent, I am probably allowed to
use (a subtle form of meta-) α-conversion in this context.38

From this, the reader can easily reconstruct by herself the witness theory
corresponding to Jaśkowski’s natural deduction system for classical logic,
i.e., a would-be Jaśkowski λχΩ-calculus – λχΩ[f,N,C], say – (equationally)
equivalent to λ∂Ω[f,N,C] above.

One might also note the fact that the original system of Jaśkowski (1927,
1934) – without f and (Ω), λχ[N,C], say – was just a notational device (no
proof-conversion, resp. proof-reduction rules). Moreover, it was constructed
on a functionally incomplete propositional signature (as noted before, we
cannot retrieve the constants f, v, definitionally, from N and C alone), whence
the attempt to associate appropriate conversion-conditions to the Jaśkowski
χ-primitive could only yield a proper subsystem of λ∂(Ω)[f,N,C].

§5.1 Worth mentioning is also the fact that Jaśkowki proposed a perspic-
uous graphical representation of his proof-primitives in the original paper of
1927 – a kind of block-structure, meant to isolate intuitively sub-proofs of a
given proof (actually, sub-terms in the corresponding λ-calculus description)
–, that was perfected by Frederic Brenton Fitch (1908–1987) et alii, later
on.39

Otherwise, the tedious and rather non-transparent formal description of
the ‘supposition rules’ in Jaśkowski (1934) can be easily re-shaped, equiv-
alently, in terms of assumption contexts and (witnessed) entailments as al-
ready suggested in the above. It is relatively easy to see that the usual
‘structural’ rules of Gentzen are implicit in Jaskowśki’s description. Actu-
ally, Gentzen’s L-system for classical logic is just a disguised form – namely,
a special case – of ‘natural deduction’.40

§5.2 Equally worth recording here is the (redundant) extension on the same
primitive propositional signature [f,N,C], mentioned by the end of Rezuş
(2009, rev. 2016), which consists of adding the double-negation (DN) rules:

(∇) ` ∇[p](a) : NNp, if ` a : p [double-negation introduction],

(∆) ` ∆[p](c) : p, if ` c : NNp [double-negation elimination].
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In the latter case, the (DN) witness-operators [rules of inference] (∇) and
(∆) are supposed to obey inversion principles of the form

(β∆) ` ∇(∆(c)) = c : NNp,

(η∆) ` ∆(∇(a)) = a : p.

As earlier, the resulting extension (decorated / ‘typed’ λ-calculus, λ∂∆,
say) can be shown to be consistent by interpreting its ‘type-free’ variant in
the (undecorated) λπ-calculus.41

It is easy to see that, in the formulation without primitive (DN)-rules, at
least one of the (β/η∆)-conditions would normally fail, whence the idea of
taking ∇ and ∆ as primitive proof-operators (rules of inference).

§6 The extensions to quantifiers (either propositional or first- resp. second
order) are straightforward.42

Illustrated next is the extension to propositional quantifiers on the (other-
wise redundant) signature [f,N,C,Π], with Π standing for the universal quan-
tifier, like in  Lukasiewicz (1929) and Jaśkowski (1934). As above, α, β, ...,
possibly with sub- and / or superscripts are used as metavariables ranging
over formulas. If the propositional variable p occurs free (even fictitiously
so) in a formula α, we write α[p] in order to make this visible. Substitutions
are mentioned accordingly: a[p:=α], and β[p:=α] resp. (read ‘p becomes α
in a, resp. in β’).

For the extended witness-syntax there are required two more proof-opera-
tors (rules of inference), corresponding to Generalization (Λ) and Instanti-
ation (I) resp. The new pair [(Λ),(I)] is analogous to the [(λ),(.)]-pair
above.

We present here a version close to Jaśkowski (1934), leaving to the reader
the task of showing equivalence with the corresponding formulation of  Lu-
kasiewicz (1929). As above, the construction admits of a decoration-free
description.

The decoration-free [‘type-free’] syntax of the resulting system (λ∂Λ) is:

witness-variables :: x, y, z, ...

witness terms :: a,b,c,d,e,f := x | λx.b | f.a | ∂x.e | c?a | Λp.a | fIα.

The additional conversion rules are (in ‘type-free’ spelling):
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(βΛ) ` (Λp.a[p]) I α = a[p:=α],

(ηΛ) ` Λp.(c I p) = c, if p is not free in c43,

together with the corresponding monotony conditions for (Λ) and (I), meant
to make equality (conversion) compatible with the operations.44

The decoration [‘typing’] is, as expected, relative to an arbitrary assump-
tion context (i.e., a finite list Γ̂ of decorated witness variables, omitted below).
We have (λ), (.), (∂), and (?), like before, as well as the new rules (for α, β
arbitrary formulas):

(Λ) ` (Λp.a[p]) : Πp.α[p], if [p] ` a[p] : α[p],

(I) ` (f I α) : β[p:=α], if ` f : Πp.β[p].

The first- (resp. second-) order case is completely analogous. In each
case, the corresponding λ-calculi can be shown to be consistent by simple
translation arguments.

§7 The careful reader might have noticed a general principle of construction
behind the witness-theory (proof-system) λ∂Λ above, viz. the fact that
the primitive witness- / proof-operators come in pairs [(abs),(cut)], where
(abs) is a (monadic) abstraction operator and (cut) is a ‘cut’-operator, i.e.,
an operation meant to ‘eliminate’ its associated abstractor (abs). Moreover,
each such a pair is supposed to characterise the associated rules of inference as
operators, by equational stipulations (here, βη-conditions), i.e., more or less,
algebraically, by indicating their ‘characteristic behaviour’. One could thus
notice a uniform introduction-elimination pattern (of construction), provided
one thinks in terms of witnesses (here: proofs), not in terms of bare formulas
(expressing propositions / propositional schemes).

Technically, it is also possible to describe a proper extension of the (min-
imal) witness-theory (proof-system) λ∂Λ, based on an idea that goes back
to the founder of classical logic, the Stoic philosopher Chrysippus of Sol[o]i,
twenty-two centuries ago. The extension is a λ-theory, i.e., a consistent λ-
calculus, as well (both ‘type-free’, and decorated / ‘typed’ as above). Of
course, I will not credit the famous Phoenician with the details, but the
reader should be certainly able to recognise the Chrysippean spirit behind
the construction.45

Writing down things in ‘Polish’ – i.e., in  Lukasiewicz notation, as ev-
erywhere here –, I will use the same propositional signature as before, viz.
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[f,N,C,Π]46, but choose a slightly different team of primitive witness-operators,
while leaving ∂, ? and λ unchanged, add two kinds of ‘pairs’, namely π(...,...)
and ↓(...,...), as well as a (mixed) dyadic abstraction-operator Σ, with term-
forming rules ≺a,f�, ↓α(a) [writing, conveniently, ≺a,f� ≡ π(a,f) and ↓α(a)
≡ ↓(α,a)], and Σ(p,x).c[p,x], resp., for proof- / witness-terms a, c[p,x], f and
formulas α.

Whence the expected formal grammar [at a decoration-free / ‘type-free’
level], with p, q, r, ..., as (meta-variables for) propositional variables, as ever:

formulas :: α, β := p | Nα | Cαβ | Πp.α

w-variables :: x, y, z, ...

w-terms :: a,b,c,d,e,f := x | ∂x.e | c?a | λx.b | ≺a,f� | Σ(p,x).a | ↓α(a).

The (decoration-free / ‘type-free’) equational theory – called ∂λ∗Σ, for
convenience – consists of

(β∂) ` c ? (∂z.e[z]) = e[z:=c],

(η∂) ` ∂z.(z?a) = a (z not free in a),

as before, in λ∂(Λ), and the following ‘polar’ conditions:

(βλ∗) ` ≺a,f� ? (λx.b[x]) = f?(b[x:=a]),

(ηλ∗) ` λx.∂y.(≺x,y� ? c) = c (x, y not free in c), as well as

(βΣ) ` ↓α(a) ? (Σ(p,x).c[p,x]) = c[p:=α,x:=a]),

(ηΣ) ` Σ(p,x).(↓p(x) ? c) = c (p, x not free in c),

together with the expected monotony constraints on the primitive witness-
operators.

The intended decoration (‘typing’) is given by

(∂) ` ∂x:Np.e[x] : p, if [x:Np] ` e[x] : f,

(?) ` c?a : f, if ` c : Nα and ` a : α,

(λ) ` λx:p.b[x] : Cpq, if [x:p] ` b[x] : q,

like in the case of λ∂(Λ), with moreover,
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(π) ` ≺a,f� : NCpq, if ` a : p, and ` f : Nq, and

(Σ) ` Σ(p,x:Nα).c[p,x] : Πp.α, if [p] [x:Nα] ` c[p,x] : f,

(↓) ` ↓α(c) : NΠp.α, if ` c : Nα,

so that the classical ‘polarities’ become obvious.47

A few more (technical) comments are in order.

§7.1 It is easy to establish the fact that λ∂Λ is a subsystem of ∂λ∗Σ.48

Indeed, define

(df .) c . a := ∂y.(≺a,y�?c), y not free in a and c.

This yields (βλ) and (ηλ), i.e.

(βλ) ` (λx.b[x]) . a = b[x:=a],

(ηλ) ` λx.(c . x) = c (x not free in c),

and, of course, monotony for the defined (.)-operator.
Set now

(df Λ) Λp.a[p] := Σ(p,z).(z?a[p]), z not free in a[p],

(df I) cIα := ∂z.(↓α(z)?c), z not free in c.

This yields (βΛ) and (ηΛ), i.e.

(βΛ) ` (Λp.a[p]) I α = a[p:=α],

(ηΛ) ` Λp.(c I p) = c, if p is not free in c.

as well as the expected monotony conditions for the defined [(Λ)-(I)]-pair of
operators. The fact that the defined operators inherit the intended decoration
(‘typing’) from the primitive decoration of the definientia is obvious.
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§7.2 Incidentally, the (Σ-↓)-free fragment of [‘type-free’] ∂λ∗Σ – call it
∂λ∗, for convenience – admits of an alternative, more general formulation
[at a decoration-free level].

Indeed, setting

(df
∫

)
∫

(x,y).c[x,y] := λx.∂y.c[e,y] (for the split operator),

we get, in ∂λ∗,

(β
∫

) ` ≺a,b� ? (
∫

(x,y).c[x,y]) = f?(c[x:=a,y:=b]),

(η
∫

) `
∫

(x,y).(≺x,y� ? c) = c (x,y not free in c),

together with the expected monotony conditions for
∫

and it is obvious that
we can trade

∫
for λ in this context (at a decoration- / ‘type-free’ level), i.e.,

that one could have had, in the background, a calculus ∂
∫

, say, instead of
∂λ∗, in the above.49

The intended art deco would have been different, however. Actually, equa-
tional equivalence holds only in a decoration-free setting. For ∂

∫
, one should

change the primitive (propositional) signature, by replacing the primitive C
[implication] with D [the ‘Sheffer-functor’ incompatibility, or nand, i.e. se-
mantically, negated classical conjunction], whereupon N [classical negation]
becomes redundant, by setting Np := Dpp. The resulting [‘typed’] calculus
∂
∫

[f,D], say – based on the witness primitives ∂, ?,
∫

and the pair-construct
π, as well as on the associated βη-conversion conditions (β∂), (η∂), and (β

∫
),

(η
∫

), resp. – is, actually, a (proper) extension of ∂λ∗[f,N,C], with Cpq :=
DpNq, in ∂

∫
[f,D].50

§7.3 In the end, ∂λ∗Σ is (Post) consistent. For the (Σ-↓)-free part of
the proof, the result is already contained in §7.2. The genuine (Σ-↓)-part
consists of a trivial translation argument, collapsing the full system on its
(Σ-↓)-free fragment.

§7.4 One might also want to notice the fact that the analogous calculus
∂
∫

Σ[f,D,Π], based on {(∂), (?), (
∫

), (π), (Σ), (↓)} – as well as its corre-
sponding (DN)-extension, for that matter – are ‘polar’ (Chrysippean) con-
structions, as well. Here, however, the details can be safely left to the reader.
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§7.5 As a final (technical) remark, all consistency proofs mentioned in this
paper amount to an easy – even though oft slightly involved – exercise of
(explicit) definability in (type-free) λπ-calculus λπ. Algebraically speaking,
we are dealing with (a rather specific class of) monoids [viewed as algebraic
varieties]. Since (the intuitionistically decorated) λπ is also known as ‘the
internal language of CCCs’ [cartesian closed categories] among category theo-
rists, most of the facts relevant here should also amount to category theoretic
folklore.51

§8 Coda. I hope my discussion above has made more or less clear what
Jan  Lukasiewicz – and his (very) young student Stanis law Jaśkowski, as well
as his (equally) young colleague Alfred Tajtelbaum [Tarski]52 – did actually
know and / or could have known, as regards ‘natural deduction’, during the
mid- and late twenties. Why they did not invent something like [decorated
/ ‘typed’] λ-calculus, in order to make things conceptually clean, evades me
completely. It’s up to my better informed – and more gifted – readers to
speculate upon.

Acknowledgement. I am grateful to J. Roger Hindley (Swansea Univer-
sity, Wales, UK) for stylistical remarks and useful suggestions concerning a
previous draft of these notes.
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§9 Notes

1Stanis law Jaśkowski graduated from high-school at eighteen, in 1924, so
he was about twenty, by then.

2The contrast ‘Satz-’ vs ‘Regellogik’ – roughly: ‘sentence / proposition
logic’ [sic] vs ‘rule logic’ –, current in the German logico-philosophical litera-
ture, mainly after Gentzen, goes back to Frege (1893) and is meant to stress a
difference of approach: pace Frege, the pioneers were mainly concerned with
the formal study of propositions and /or propositional schemes, as expressed
by formulas, and the properties thereof (like, e.g., provability in a given ‘lo-
gistic’ system [‘Satzsystem’], etc.), while Frege and, subsequently, Gentzen
payed also attention to the rules of inference and to their properties (like,
e.g., derivability and / or admissibility in a given system [of rules]). With a
suggestive term, we may refer to the former approach – and to its defendors /
practitioners – as Formularian (with implicit allusion to Peano’s various edi-
tions of his ‘Formulaires’, mere collections of [formalised] formulas). Roughly
speaking, for a Formularian, a logic is a set of provable formulas, and a prov-
able formula [‘thesis’ or, even, ‘theorem’] is, at best, the codification of a
[bunch of] rule[s] of inference. The Formularian approach has been effec-
tive in the early development of ‘algebraic logic’ and, later, in model theory,
but is, conceptually speaking, rather inadvertent, since two distinct ‘logics’
may share exactly the same set of ‘tautologies’ [provable formulas], while
still differring as to the corresponding derivable rules. The alternative rule-
oriented approach, suggested by  Lukasiewicz in his Warsaw Seminar (1926),
was motivated in terms of ‘naturality’, by reference to the actual mathe-
matical reasoning and this was, apparently, also the case for Gentzen, a bit
later. Technically speaking, the distinction between rule-admissibility [clo-
sure of a set of propositions / formulas under a given rule of inference] and
explicit [rule-] derivability, already implicit in Gentzen (1934–1935), comes
rather late to the attention of the logical theorists; to my knowledge, it is
due to Paul Lorenzen (1915–1994) – cf. Lorenzen (1955) – and to Haskell
B. Curry (1900–1982), slightly later. The first explicit counterexample to
the (Formularian) tenet that a logic = a set of provable formulas, is due to
Henry Hiż (circa 1957–1958), who described a [three-valued] ‘logic’, H3 say,
containing all classical, two-valued tautologies as provable formulas, where
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not all classically valid rules of inference are derivable. See Hiż (1957, 1958,
1959) and, possibly, Nowak (1992), for a model-theoretical account of H3.

3For bio-bibliographical and historical details on Jaśkowski and his sys-
tem(s) based on ‘supposition rules’ [Polish: ‘oparta na dyrektywach za loze-
niowych’], i.e., proper / general rules of inference, using ‘assumptions’ in their
premises, viz., entailments, see, e.g., Dubikajtis (1967, 1975) – a reliable in-
formant on the logical whereabouts of Stanis law Jaśkowski, Lech Dubikajtis
(1927–2014) was a former PhD student and a research assistant of Jaśkowski
at the Warsaw National Institute for Mathematical Sciences (currently, the
Institute of Mathematics of the Polish Academy of Sciences) –, as well as Ko-
tas & Pieczkowski (1967), Or lowska (1975), Indrzejczak (1998, 2016), Piȩtka
(2008), and, possibly, the textbook Borkowski & S lupecki (1963). On the
subsequent history of ‘natural deduction’ – a comedy of conceptual errors,
indeed –, see, e.g., Pelletier (1999, 2000), and Hazen & Pelletier (2012, 2014).
General information on the ‘Lvov-Warsaw school’ can be found in Woleński
(1985, 2015), Jadacki (2006), Wybraniec-Skardowska (2009), etc.

4Circa 1923. See the final outcome in  Lukasiewicz (1934) and, possibly,
Rezuş (2007, rev. 2016), for the main claim.

5On the authority of Paul Bernays (1888–1977), Gentzen borrowed his
‘structural’ rules from Hertz, a former physics student of Hilbert in Göttingen.
Cf. Rezuş (2009, rev. 2016).

6See, e.g, the Bibliography and Index of Names and Persons of the collec-
tion Tarski (1956).

7In this respect, Frege was about two millennia behind Chrysippus (and,
even, Aristotle, in a way). On this, see, e.g., Rezuş (2007, 2009, rev. 2016).

8As I could gather from the newest Russell expertise, this happened some-
time around 1902–1903.

9As noticed, in passing, by Kurt Gödel, Russell was even later quite con-
fused about the general concept of a logical rule of inference.

10Although he did not acknowledge the latter source. Cf. Russell (1906).
11One should perhaps read, once more, carefully, the rather vast output of

Stanis law Leśniewski, on this. Cf. the collection Leśniewski 1992.
12See Axiom 8∗ in Tarski (1930), and the footnote on page 32, in the

collection Tarski (1956), for references. Some authors used to credit Herbrand
with the discovery. However bright, Jacques Herbrand (1908–1931) was a
teenager, just 13 years old, in 1921, so it is unlikely he spotted errors in
Frege’s [German] texts nobody used to read by then, even in Germany!

13At a quantifier-free level, Jaśkowski had a third rule – of the same kind
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as (DT), actually –, yet a less inspired choice I will go into later on.
14In the limit case (n = 0), the axioms may be thought of as null-ary

operations, if we want full generality.
15This was actually the case, historically speaking: the idea came first

– exactly in these terms – to a later (Irish) student of  Lukasiewicz, in the
‘(logical) Polish quarter’ of Dublin, during the early fifties. [After the WWII,
‘being unwilling to return to [...] Poland [...],  Lukasiewicz looked for a post
elsewhere. In February 1946 he received an offer to go to Ireland. On 4 March
1946 the  Lukasiewiczes arrived in Dublin, where they were received by the
Foreign Secretary and the Taoiseach Eamon de Valera. In autumn 1946
 Lukasiewicz was appointed Professor of Mathematical Logic at the Royal
Irish Academy (RIA), where he gave lectures at first once and then twice a
week.’ Simons (2014)] See the references to the D-operator, the ‘condensed
detachment’ operator, of Carew A. Meredith, below, and, possibly the notes
Meredith (1977) – by David Meredith, the American cousin of Carew, also a
logician – for further historical details.

16Besides, one must have additional rules, called ‘structural rules’, in the
current proof-theoretic terminology borrowed from Gentzen (1934–1935),
that are rather trivial, and remain un-expressed, formally, in usual presenta-
tions of ‘natural deduction’ .

17The so-called ‘abstraction-operators’ – and, in general, the variable-
binding mechanisms – are not welcome in (abstract) algebra, indeed. This
on historical reasons, likely. Nicolaas G. de Bruijn observed once, in con-
versation, that abstraction-operators do not occur in pre-XIX-century math-
ematics. This explains, in a way, the initial lack of interest in such phe-
nomena among algebraists. In recent times, when confronted incidentally
with such cases – first-order quantifiers, for instance –, they made appeal
to elaborated local solutions in order to cope with the problem. Paul Hal-
mos and Alfred Tarski invented specific constructions – polyadic algebras,
resp. cylindric algebras – in order to algebraise first-order logic with quan-
tifiers, resp. quantifiers and equality. In more general situations, modelling
abstraction operations in mathematical terms requires specific category the-
oretic methods and constructs that go far beyond the traditional algebraic
way of thinking about ‘operations’ and ‘operators’. Moreover, there are gen-
uine phenomena, occurring frequently in computer science – like, e.g. the
non-local control (typically, jumps), the side effects, or the so-called continu-
ations – that can be easily described in terms of abstraction-operations, but
whose behaviour resist algebraisation, as understood in traditional terms.
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The (general) logical rules of inference fall within the same category.
18Like in the usual algebraic case, in fact, as we do not encounter 13-ary

or 17-ary operations in current mathematical practice, either. — In logic,
an exception can be encountered in the usual presentation of intuitionistic
propositional logic, where the so-called or-elimination rule (case-analysis) is
a witness operator of gen-arity [0,1,1], as well as in the case of Jaśkowski’s
rule χ (a witness-operator of gen-arity [1,1]) to be discussed below.

19Completeness is shown in  Lukasiewicz (1929), Chapter III, §22. Cf. also
 Lukasiewicz (1931).

20Specifically, Chapter IV of  Lukasiewicz (1929) is based ‘in great part’
[see the Preface of the first edition] on Tarski’s previous work. Cf. also
 Lukasiewicz & Tarski (1930), §5. For Leśniewski, see now Leśniewski (1992).

21Cf., e.g., mutatis mutandis, Anderson & Belnap (1992) [2], §33.4.
22As actually done in  Lukasiewicz (1929), Chapter IV, §24.
23The ‘algebraic’ alternative – which consists of [1] defining first a ‘relative’

falsum by f[α] := NCαα, say, and [2] proving next Ef[α1]f[α2], for any two
fomulas α1, α2 etc. – induces unnecessary formal complications. A simi-
lar remark applies to Jaśkowski’s ‘natural deduction’ quantifier-free system,
based originally on [N,C] alone.

24It turns out that all we need is just a single new axiom ` v, for this
purpose. For completeness, see, for instance, Wajsberg (1937), I, §5, resp.
1939, II, §2, and the remark (below) that ex falso quodlibet can be obtained
from the  Lukasiewicz axiom ` O[p,q] : CpCNpq and a ‘paradigmatic’ proof
of v, like ` Ω : v.

25Technically speaking, the D-operator is the ‘condensed detachment’ op-
erator of Carew A. Meredith (1904–1976). Notably, the Irishman attended
 Lukasiewicz’s lectures in Dublin, during the early 1950. See, e.g., David
Meredith’s bio-bibliographical note, Meredith (1977), and, possibly, Rezuş
(1982, 2010), Kalman (1983), and Hindley & Meredith (1990), for details.

26The latter can be uniquely restored (modulo alphabetic variants) by the
Robinson unification algorithm. Cf. Rezuş (1982).

27Cf. Hindley (1969, 1997), Hindley & Seldin (1986), and Hindley &
Meredith (1990). As a matter of fact, here, one has a ‘rigid’ typing, à la
Church and de Bruijn, instead. For the difference, see Hindley (1997), Baren-
dregt et al. (2013) and the review Rezuş (2015). We could have had a (typed)
combinator theory – a ‘combinatory logic’ –, as well, but, since the equational
constraints on the primitive combinators are rather non-transparent, I prefer
to skip the details. Otherwise, they can be recovered from remarks following
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below.
28See, e.g, Rezuş (1982) and the discussion appearing by the end of Rezuş

(2010).
29The ceteris paribus clause refers to the fact that the argument can be

taken relative to a parameter Γ̂ ≡ [x1:α1 ... xn:αn] (n > 0).
30This is the so-called ‘bracket abstraction algorithm’ obtained first in

terms of combinators – and, rather late, in this form –, by Haskell B. Curry
(in 1948–1949) and, independently, by Paul C. Rosenbloom (1950, 2005R),
that is about thirty years after Tarski. See also Rosser (1942, 1953) and
Curry & Feys (1958), 6S.1, etc. One can improve on the last clause (3), by
processing first the subcase a ≡ x : α ≡ α′, while setting e := f : Cα′β ≡
Cαβ.

31Cf. Cardano (1570), Lib. V, Prop. 201, resp. Cardano (1663) 4, p. 579.
For pater Clavius [Christophorus Clavius, aka Christoph Klau, SJ (1537–
1612)], cf. Clavius (1611) 1.1, pp. 364–365 [comments ad Euclid Elementa
IX.12], as well as 1.2, p. 11 [comments ad Theodosius Sphaerica I.12]. See,
also Rezuş (1991, rev. 1993), pp. 4, 23, 46, and Bellissima & Pagli (1996)
passim, for details. Notably,  Lukasiewicz was familiar with the references
above, as well as with the medieval anticipations of his O-axiom (the ‘Law of
Duns Scotus’). Cf. e.g.,  Lukasiewicz (1929) and  Lukasiewicz (1930), Chapter
II, §8.

32This is the only place where we actually need Ω in derivations.
33If the basis consists only of rules, as here, the axiom (Ω) is redundant.

See below.
34No need for Ω, here. Cf., e.g., Rezuş (1990, 1991).
35This is possible since, unlike the pure λ-calculus λ, the extensional λπ-

calculus λπ contains infinitely many nontrivial copies of itself.
36See also Rezuş (1990, 1991, 1993) and Sørensen & Urzycyn (2006).
37In retrospect, it is hard to say why Jaśkowski did prefer the complex (χ)-

rule (a kind of ‘mixed’ abstractor, in witness-theoretic terms, like the rather
complex case-construct [or-elimination] in intuitionism), as a primitive rule
of inference, in place of the ‘elementary’ reductio ad absurdum (∂) [here, a
monadic abstractor, like (λ)] and the ‘hidden’ rule / operator expressing the
‘law of [non-] contradiction’ (?). Prima facie, I would suspect the choice was
a matter of economy. Although there was an even more drastic economy in
sight, that both  Lukasiewicz and Jaśkowski were, apparently, well aware of,
viz. by adopting the ‘inferential’ definition of negation, à la Peirce (1885),
¬p := Cpf, in which case the primitive rule (χ) could have been replaced by
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an ‘inferential’ variant of reductio ad absurdum (γ, a monadic abstractor,
as well, with ` γz:¬p.e[z] : p, for [z:¬p] ` e[z] : f, in decorated / ‘typed’
version, etc.). Cf. Rezuş (1990, 1991, 1993). As a matter of fact, in the
latter case, the witness-theoretic properties (as regards proof-conversion resp.
proof-reduction [= detour elimination]) of the γ-operator are more involved
that those presupposed by the ‘natural’ [(∂)-(?)]-pair, but  Lukasiewicz and
Jaśkowski did not think in such terms, anyway. Even Gentzen (1934–1935)
was slightly confused as to the would-be proof-detours that could – and
should – be associated to a genuine classical negation. It took us some
thirty years, at least, until we were able to reach a clean conceptual insight
on the matter. See, e.g., Prawitz (1965) for a solution, applying to the
‘inferential’ case and the combinator resp. λ-calculus variants, described
in Rezuş (1990, 1991) [λγ-calculi]. Besides, it took us about other twenty
years, in order to get something as simple as the λ∂-calculus sketched under
§4 above (Rezuş, cca 1987), corresponding to what the pioneers – Frege,
Peirce, Russell,  Lukasiewicz, Leśniewski, Tarski etc. – might actually have
had in mind.

38Viewed abstractly, the witnessed entailments are, actually, a kind of
meta-combinators, or closed meta-terms, in the end. — Incidentally, with
the terminology mentioned earlier, the Jaśkowski witness-operator χ should
have gen-arity [1,1], not gen-arity [2] (sic), whence the alternative spelling
above.

39Cf. Fitch (1952) and Anderson & Belnap (1975, 1992), for applica-
tions to intensional logics. Notably, a similar representation was invented
and used, later – independently –, by Hans Freudenthal (1905–1990), in di-
dactic presentations of classical logic, as well as by Nicolaas G. de Bruijn
(1918–1912), in his work on automath [automated mathematics] and on
the so-called ‘Mathematical Vernacular’ [WOT = Wiskundige Omgangstaal,
in Dutch]. On this, see, mainly, de Bruijn’s lectures on Taal en structuur van
de wiskunde [The language and structure of mathematics], given at the Eind-
hoven Institute of Technology, Department of Mathematics and Computing
Science, during the Spring Semester 1978, and summarised subsequently [in
Dutch], in Euclides 44 (1979–1980), as well as Rezuş (1983, 1990, 1991), for
further references.

40A Gentzen L-sequent ‘multiple on the right’, α1, ..., αm ` β1, ..., βn
(m,n ≥ 0), is a specific entailment of the form α1, ..., αm, β̄1, ..., β̄n ` f –
where β̄i is a kind of ‘surface negation’ of βi (for 0 < i < n + 1), a rather
confusing idea based on an ad hoc piece of ideography –, also known as
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rejection or refutation (elenchos, in the Greek of Aristotle and Chrysippus),
about two millenia before both Jaśkowski and Gentzen were born. As a
matter of fact, mutatis mutandis, Chrysippus’ conceptual setting was cleaner.
Cf. Rezuş (2007, rev. 2016) for details.

41So, once more, consistency can be established already at undecorated /
‘type-free’ level. In fact, λ∂∆ is redundant: if the [(∆),(∇)]-pair is present,
we can leave out either the [(λ),(.)]-pair or the [(∂),(?)]-pair, viz. λ∂∆ is,
ultimately, equivalent [in a ‘type-free’ setting] with each of its ‘halves’, λ∆,
resp. ∂∆.

42See, e.g., Rezuş (1990, 1991, 1993) for first-order quantifiers, and, mutatis
mutandis, Rezuş (1986) for the ‘extended propositional calculus’ case (i.e.,
classical logic with propositional quantifiers), as well as for the second-order
case.

43Exactly as in Girard’s ‘System F’ (PhD Diss., Paris 7, 1971). Of course,
the latter λ-calculus is the-[(∂),(?)]-free fragment of λ∂Λ, i.e., λΛ, by present
notational standards. Cf. Rezuş (1986) for details on the Girard-Reynolds
λ-calculus.

44Since I have omitted, everywhere in the above, any reference to proof-
contexts, the usual provisoes on p-variables are also tacitly assumed.

45Cf. Rezuş (2007, rev 2016), for technical – and historical – evidence sup-
porting the claim. The extension works for the system with (DN)-primitives,
too.

46We may want to abbreviate, for convenience, C̄ := NC and Π̄ := NΠ (so
that C̄ is marked as the ‘polar [opposite]’ of C, and Π̄ as the ‘polar [opposite]’
of Π, resp.), but the  Lukasiewicz notation makes this superfluous. One might
also note the fact that, by the standards of Rezuş (2007, rev. 2016), C̄ and Π̄
would have counted as Chrysippean connectives. Specifically, C̄ corresponds
to the Chrysippean connector (binary connective) more, i.e., māllon... ē...,
a kind of rather... than..., in English, while the quantifier-free part of the
extended calculus [with (DN)-primitives] – to be described next – corresponds
exactly to the semantic (C-C̄)-fibration of ‘Chrysippean logic’ Ch.

47Formally, ∂ looks, in the end, like a kind of degenerated Σ (sic). The
informed reader has already realised the fact that the (Σ-↓)-rules are just
(undecorated / ‘type-free’) analogues of the usual intuitionistic ∃-rules. Cf.
Rezuş (1986, 1991), etc. — On the historical side, if I am not very mistaken,
I remember having encountered something similar to the ‘polar’ pair [(λ)-
(π)] in work of Dag Prawitz, going back to the late nineteen-sixties and
the early seventies (although with no reference to the Stoic lore and / or
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to would-be [classical] proof-isomorphisms, i.e., to proper proof-conversion
rules). Whence, ultimately, the basic idea behind the construction of ∂λ∗(Σ)
should be, very likely, accounted for as a piece of (historical) data-retrieval,
rather than as a genuine finding, due to the present author. In retrospect,
virtually any mindful reader of Prawitz, already familiar with the basics of λ-
calculus, could have came out with a similar proof-formalism, even ignoring
the Chrysippean antecedents.

48To show that λ∂Λ is a proper subsystem of ∂λ∗Σ requires a more
involved argument. I’d rather defer the details (too far from the subject of
the present notes, anyway).

49As a bonus, for ∂
∫

(Post-) consistency is straightforward. The latter is a
(proper) subsystem of λπ: define

∫
by

∫
[x,y].c[x,y] := ∂z.c[x:=1(z),y:=2(z)],

where j(c), j := 1, 2, are the usual λπ-projections and ∂ ≡ λ. — The
λπ-calculus is known to be consistent by a well-known lattice-theoretical
(actually topological) construction due to Dana Scott (1969), as well as by
constructive (‘syntactical’) means, as shown recently by Kristian Støvring
(November 2005, rev. 2006).

50In his Warsaw lectures,  Lukasiewicz alluded actually to the alternative
– cf., e.g.,  Lukasiewicz (1929), Chapter II §17 –, but he was, apparently,
distracted by provability details on Henry M. Sheffer (1913) and Jean Nicod
(1917), so that the idea was diluted, later on. It is only in (very) recent
times that the Peirce-Sheffer nand and nor connectives deserved a proper
treatment in ‘natural deduction’ terms.

51The specific subject – falling under the label cartesian closed monoids
[CCMs, for short] – has been invented by Dana Scott and Joachim Lambek
sometime during the 1970’s and has been vastly explored since, mainly in
research on categorical models of λ-calculus.

52See Rezuş (1982, 1990) for relevant complements of information.
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Jan Woleński (eds.) The Lvov-Warsaw School and Contempo-
rary Philosophy, Kluwer Academic Publishers, Dordrecht 1998, pp.
253–264.

33



[26] Andrzej Indrzejczak (2016) Natural deduction, in: Jean-Yves
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edition: Państwowe Wydawnictwo Naukowe [PWN: Polish Scientific
Publishers], Warsaw 1958. English translation [of the second edition]
by Olgierd Adrian Wojtasiewicz, as  Lukasiewicz (1963).)

[36] Jan  Lukasiewicz (1930) Philosophische Bemerkungen zu mehrwerti-
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[53] Adrian Rezuş (1982) On a theorem of Tarski, Libertas Mathematica
[Arlington TX] 2, 1982, pp. 62–95. (Work of 1979–1980.)

37
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[60] Adrian Rezuş (2009) An ancient logic, Nijmegen 2009, rev. March 23,
2016.
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