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BEYOND BHK

Adrian Rezuş

December 1, 1991 (revised July 20, 1993)

[. . . ] intuitionist mathematics has its general [. . . ] theory of mathematical assertions,
a theory which [. . . ] may be called intuitionist mathematical logic.

L. E. J. Brouwer [Brouwer Archief , MS 49 (tr. W. P. van Stigt)]

Foreword

Categories of objects. Logics as equational proof-theories. Traditionally, the “language” of classical first-
order logic has means of referring to “individuals” in some domain and means of expressing “facts” (or
propositions) about them. The proofs themselves are handled in a non-objectual way. In particular, they
are not codified syntactically. Some other kind of representation is implicitly involved in so-called “proof
theory”. Usually, the latter makes appeal to the eye – as opposed to the mind ! –, rendering any theoretical
approach to logic debatable (logic is about proofs, after all). This policy hides a rudimentary form of
empiricism and is common to both pre- and post-Fregean traditions. Among other things, it forbids subjects
like “proof-semantics for classical logic”, for instance. On the same basis, it doesn’t make too much sense
to look for (theoretical) criteria of proof-identity , beyond obvious isomorphisms that can be established on
“proof-figures”, “proof-trees” or some other ad hoc organization of the visual representation space.
There is room for a different way of thinking about proofs, however. We are able to recognize and identify
proofs on theoretical grounds.
Besides individual terms and formulas, we construct first-order languages with an additional syntactic cat-
egory: the proof-terms. The intended meaning of a proof-formalism is given by the propositions-as-types
isomorphism [H. B. Curry, C. A. Meredith, H. Läuchli, W. A. Howard, etc.]: the propositions are the “types”
of proofs (or “proof-classifiers”).
A category of objects is (analogous to) a constructive set (à la Bishop or Martin-Löf). In intuitionis-
tic/constructive mathematics, the proofs (“derivations”) make up a category of (abstract) objects: under-
standing proofs require
1◦ (generic) means to refer to arbitrary objects of the category (proof-variables, proof-terms) and
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2◦ identity-criteria for these objects.
The proofs of a first-order logic L (containing the so-called “positive” implication) can be described via an
equational theory λ(L), viz. a typed/stratified λ-calculus, extending the ordinary typed λ-calculus λτ . So far,
this procedure has been known to apply only to the first-order intuitionistic logic HQ and some derivatives,
as obtained by adding, e.g., propositional quantifiers to the propositional fragment of HQ or higher-order
classifiers. As applied to HQ, this is the essence of the so-called “BHK”-interpretation [“Brouwer-Heyting-
Kolmogorov”] of the intuitionistic proof-operations [Troelstra & van Dalen 88]. We can extend this technique
“beyond BHK”. E.g., [Rezuş 90] contains a treatement of classical first-order logic on these lines, while
[Rezuş 91] is concerned with the interpretation of the equational theory of first-order proofs in modal logics
(contained in Lewis’ S5).

Which proofs are ’reliable’ within the classical proof-world? In these notes, we examine the equational
proof-theory of the first-order intuitionistic logic [“the Heyting calculus”] as a subsystem of classical proofs.
In other words, we ask rather, in “positive” terms: what is a ’reliable’ proof [for Brouwer and Heyting ,
Dutch: betrouwbaar ], within the classical proof-world? Obviously, the extant (classical, non-intuitionistic,
post-Gentzen) tradition in proof-theory (Beweistheorie) has no means to answer this type of question. [In
fact, the question cannot be even formulated.]
For an intuitionist, a proof is an (abstract) object (of thought), occurring naturally in the current (math-
ematical) practice, as a result of a systematic reflection on this practice. As expected, intuitionistically, a
proof-theory is a piece of (intuitionistic) mathematics.

[Classical ] reductio ad absurdum as an abstraction operator . For the first-order classical logic CQ or its
extensions, the required additions – to some background knowledge of typed λ-calculus – presuppose the
fact that [1◦] we are able to define, e.g., a proof-operator [an abstractor, say, i.e., a proof -variable binding
mechanism], recording the genuinely Boolean uses of reductio ad absurdum and that [2◦] we can describe its
equational behavior. (There is a combinatory alternative to this, less transparent, however.) This operator
is the γ-abstraction [Rezuş 90]: intuitively, it allows to conclude “positively” that a proposition expressed by
a formula A has a proof [γx:¬A.e[[x]], say] from the fact that a proof [e[[x]]] of a contradiction ⊥ [= falsum,
absurdum] has been obtained from the [“negative”] assumption that there is an arbitrary proof [x] of ¬A.
(Everywhere here, negation ¬ is supposed to be understood inferentially [¬A ≡df A → ⊥].)
The general concept disclosed is that of a [typed ] λγ-theory [= Post-consistent extension of λτ ]. In particular,
the proof-theory of the first-order classical logic CQ can be formulated as a typed λ-calculus λ(CQ).
We build upon a typed λ-calculus λπ!, which is familiar from the Automath literature and Martin-Löf’s
type-theory: besides the usual typed abstractions and applications, λπ! has type-products [represented by
conjunctions] with an extensional pairing [“surjective pairing”] and is augmented by first-order abstractors
and applications associated to first-order products of families of types [represented by universal quantifi-
cations]. In fact, λπ! is, more or less, the pure part of an Automath-system, proposed in [Zucker 77].
Proof-theoretically, it describes also the proof-behavior of the [⊥,→,∧,∀]-fragment of Johansson’s [36] Mini-
malkalkül. λπ! is known to be Post-consistent [qua equational theory].

λγ(0,&)CQ: the proof-theory of first-order classical logic. The most economical formulation for a λ(CQ)-
theory is likely a calculus λγ0CQ, which extends properly λπ!, by primitive γ-abstractions γx:¬A.e[[x]], where
A is atomic (“prime”), subjected to the obvious proof-term stratification rule:

(→iγ): Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γx:¬A.e[[x]] : A,
for any assumption-set Γ, and – besides γ-congruence – only two equational postulates, stating, resp.

[η → γ]: γ-extensionality , i.e., unicity of the γ-behavior relative to the usual typed applications [= uses
of modus ponens], [formally, assumming stratifiability on both sides, one has a reversal of the usual
η-rule:
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γx:¬A.x(f) = f, provided f does not depend on x], and

[
∮

γ]: γ-diagonalization, allowing to eliminate specific uses of reductio ad absurdum occurring within
the scope of [“inside”] a proof by reductio “of the same type”, so to speak. [Assumming stratifiability
on both sides, this reads, formally:

γx:¬A.f[[x]](x(γy:¬A.e[[x,y]])) = γz:¬A.f[[z]](e[[z,z]]),

where e[[z,z]] is obtained from e[[x,y]] by identifying the displayed proof-variables [x ≡ y ≡ z]. Intuitively,
a proof of the form γx:¬A.f[[x]](x(γy:¬A.e[[x,y]])) has, indeed, the character of a – slightly sophisticated
– “proof-détour”, since γ plays, classicaly, the rôle of an “introduction” rule, rather than that of an
“elimination”. However, the “introduction-elimination” dichotomy applies properly only to Minimal-
kalkül-like systems of rules/proof-operators.]

Note that A is supposed to be “prime”, in both [η → γ] and [
∮

γ].1

The “complex” uses of reductio [γ-abstractions γx:¬A.e[[x]], where A ≡ ⊥ or a complex formula] can be then
introduced by an inductive definition.2The full theory λγ&CQ, obtained by using arbitrary typed γ-terms
as primitives, and by replacing the inductive conditions ([γ⊥], [γ→], [γ∧], [γ∀]) by obvious postulates is
(stratification/equationally) equivalent to λγ0CQ.

We can show Cons(λγ0CQ), i.e., Post-consistency for λγ0CQ [= proof consistency for first-order classical
logic], by extending the kernel of the “negative” translation of [Glivenko 28,29] to the proof(-term)s of
λγ0CQ. The outcome [III, below] is an effective (1–1) translation from λγ0CQ to its γ-free fragment λπ!,
known to be Post-consistent. In [Rezuş 90], the result is obtained by a type-free argument. In particular,
the procedure – described on half a page – is also admissible intuitionistically: it supplies a “dictionary” for
proof-operations that do not make sense, in general, in the intuitionist practice.

What is not intelligible intuitionistically is just the intuitive identification/interpretation of the abstract γ-
operations as logical proof-operations: indeed, the abstraction operator corresponding, classically, to reductio
ad absurdum has only local – “finitary”, so to speak – meaning in terms of HQ-proofs. Technically, for
each [⊥,→,∧,∨,∀,∃]-formula A and any proof f such that f proves intuitionistically ¬A ∨ A, there is an
abstraction operation γf , depending on f , which can be shown to share relevant properties with the “global”
γ-abstractor. Beyond the – intuitionistically – recognizable “local”/“finitary” information, the classical γ-
abstractor attempts to supply “global” information about proofs, acting, qua information-processing agent,
like a highly predictable – although intuitionistically “unreliable” – oracle.

λγ&CQ has [∨,∃]-“type-constructors” defined via the usual Ockham/De Morgan transformations [A∨B
≡df ¬(¬A∧¬B), with ∃ “generalizing” ∨, as expected]. These definitions admit of associated “negative”
proof-operators [Boolean “injections” j, J and Boolean “selectors “

∨
\,

∨
∪], with an appropriate extensional

behavior.

The [full ] Heyting calculus is a proper fragment of λγ&CQ. The bulk of the work [IV–VII] is devoted
to the tedious task of deriving the stratification/equational behavior of the Minimalkalkül, resp. Heyting
proof-operators associated to [⊥,∨,∃] in terms of the “negative” Boolean analogues. The full Heyting first-
order proof-calculus λHQ, with “⊥-conversions” [ex-falso-rules, here ω-rules] and so-called “commuting

1For readers familiar with the proof-system of the Heyting first-order logic, the γ-diagonalization postulate must be also
reminiscent of the Heyting “commuting conversions”. Indeed, the “selectors” associated to the intuitionistic ∨ and ∃ are
analogous to appropriate uses of γ. In general, the Heyting proof-calculus would allow only “cancelling” γ-abstractions, of the
form ωA(e) ≡df γx:¬A.e, where e : ⊥ does not “depend on” the assumption [x:¬A], so that this structural analogy is useful
only in a Boolean setting.

2The “recursive eliminability” of γ was, in fact, known to/implicit in [Prawitz 65], although not in type-theoretic – or
λγ-calculus – form. This does not depend on γ-diagonalization, by the way; see details in [Rezuş 90].
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conversions” ([Prawitz 65], [Troelstra 73], [Troelstra & van Dalen 88]) is shown, finally, to admit of a
definitional embedding into the classical theory λγ&CQ.
The simulation of the intuitionistic proof-operations in terms of λγ&CQ proof-operations is an effective
translation. This yields Cons(λHQ), too. Ultimately, we obtain an effective translation of λHQ into λπ!,
i.e., into a proper fragment of it, known to be consistent by intuitionistically/constructively acceptable means
(cf., e.g., [Martin-Löf 84]). In fact, λπ! and λτ can be shown to be equi-consistent by very simple translations,
so that Cons(λHQ) amounts, in the end, to Cons(λτ ), i.e., the problem is reduced to a question about
the ordinary – “simple” – typed λ-calculus.3Existing alternatives of showing Cons(λHQ) recommend either
a confluence argument or a model-theoretic approach. The former involves hundreds of separate cases to
check, whereas the latter has meager chances of becoming intuitionistically intelligible.

The logic of “complete refutability”. In analogy with λHQ, one can isolate – within λγ&CQ – the equa-
tional proof-theory of the first-order logic of “complete refutability” DQ (also known as a “logic of strict
negation”: Curry’s LD in [Curry 52,63], [Seldin 89]). The interest in DQ is in the fact that its inferential
[⊥,→] part is, in a sense, “non-Brouwerian” and – inside CQ – complementary to the inferential part of
HQ. Indeed, DQ and HQ disagree mainly on negation: DQ allows “the Law of Clavius” [consequentia
mirabilis: ¬A → A → A], which is, clearly, not HQ-derivable, and discards as incorrect (“non-strict”) the
intuitionistically unobjectionable ex falso quodlibet [⊥ → A].
On a proof-level, behind the “Rule of Clavius” ¬A ‖− A ⇒ ‖− A, there is an inferential proof-operation [i.e.,
an abstraction operator] ε, say, which is definable classically, in λγ&CQ, by εx:¬A.a[[x]] ≡df γx:¬A.x(a[[x]]).
So, the type-theoretic variant of this – strange, old – proof-pattern4is:

Γ[x:¬A] ‖− a[[x]] : A ⇒ Γ ‖− εx:¬A.a[[x]] : A.
Now, the ω’s mentioned above [that is: the uses of ex falso quodlibet: ωA(e) ≡ γx:¬A.e, with x not free
in e], and the “Clavian” abstractions ε are “complementary” within/inside λγ&CQ, in the sense that they
can be put together, in order to make up [the effect of] a use of reductio ad absurdum [γ]. On a provability
level, this is well-known. Formally, one can define, in λγ&CQ,

γ◦x:¬A.e[[x]] ≡df εx:¬A.ωA(e[[x]]),
on a proof-(term)-level, and, in view of (a special case of) [

∮
γ], λγ&CQ is able to identify the new γ◦-

abstraction with the old one. This can be generalized to a hierarchy of triples [γ[n],ε[n],ω[n]], n ≥ 0, that
are collapsed back to [γ,ε,ω] by γ-diagonalization. Without [

∮
γ] or with assumptions weaker than [

∮
γ], one

can distinguish a hierarchy of subsystems of λγ&CQ, that “prove the same theorems” [i.e., share the same
“stratification criteria” for proof-terms], but are still equationally distinct (using different “identity-criteria”).
The addition of the ε-abstraction to the ordinary typed λ-calculus λτ yields the proof-theory of the infer-
ential [⊥,→] part of DQ. The “positive” [→,∧,∀] part of DQ is like in CQ and in Minimalkalkül, whereas
the “negative” [∨,∃]-proof-operators of DQ are slight generalizations of their Minimalkalkül/ intuitionistic
analogues. Ultimately, one can reconstruct proof-theoretically DQ as a typed λ-calculus, λDQ say, that can
be embedded into λγ&CQ, as in the case of the Heyting proof-calculus. A complete description of λDQ is
tedious (although it has no “⊥-conversions” - since it has no ω’s - it requires more “commuting conversions”
than HQ): we give only information estimated useful in view of retrieving the basic ingredients (modulo
patience and computing power).
A conjecture. Internal evidence (as, e.g., among other things, the fact that λγ&CQ is complete relative
to the Heyting calculus, that it collapses many distinctions, like those among [γ,ε,ω]-triples, etc.) suggests
the conjecture that λγ&CQ is Post-complete. That is: if CQ ‖− A one cannot add a new closed equation

3The Heyting calculus is not contained in Martin-Löf’s type theory (because of the “⊥-conversions” and the “commuting
conversions”).

4Cf. Euclid Elementa IX.12, [Clavius 1611] ad loc., [Cardano 1663] 4, 579, [Saccheri 1697,1733] passim.
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a1 = a2, where a1, a2 are proofs of A, without loosing [Post-] consistency for the resulting extension. This
is a typed analogue of a situation obtaining [Böhm 68] for the extensional type-free λ-calculus, where we
cannot identify consistently two arbitrary normal forms. Here, the normal[izabi]lity requirement is already
insured by stratifiability.
Coda. The appendix pays attention to assorted topics, somewhat loosely related to the main theme (the
Gentzen L-systems, the concept of a proof-transformation for CQ, and the “double negation” interpretations
of CQ into HQ along the Kolmogorov [25] translation-pattern). Last, a systematic guide to the essential
literature on BHK is supplied.5

5Wherefrom one can see in a glance that the main theme is surprisingly endemic in print and has many ramifications.
The guide is also intended to cover the [remaining] “assorted topics”, alluded to – but not documented – in the main text,
as a concise – and, hopefully, more useful – substitute for would-be learned – yet, inevitably verbose and ultimately casual –
footnotes. There is no claim of completeness, as regards the corresponding bibliography, of course.
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Chapter I

Background: the global structure of a proof-language

General assumptions. A (first-order) proof language is an extension of a usual first-order language (with,
as syntactic categories, the individual terms and the formulas). Typically, we take also into account a new
syntactic category: the proof-terms.

As regards the intended meaning of the resulting formalisms, we use the familiar [Curry-Meredith-
Howard] propositions-as-types isomorphism as a way of speaking: a proposition is therefore nothing else
than the type of a proof -[object ], denoted by a proof-term. Indeed, a (first-order) proof is the proof
of a fact , a proposition, a [Fregean] “thought”, etc. that can be expressed by a first-order formula. In
other words, we assume implicitly that the propositions of a given logic L can function as regimentation
criteria (“classifiers” or “types”) for a special category of objects that can be identified intuitively with
the L-proofs (= the proof-objects of L). Here, a category of objects is analogous to an intuitionistic
species or a constructive set , in the sense of Errett Bishop and Per Martin-Löf. In short, we know what
is a category C of objects if (1) we have means of establishing what is an arbitrary object of C and,
(2) for any two arbitrary objects of C, we have also means of establishing whether they are equal or
distinct objects of C. Of course, the exact nature of these “means” must be further qualified, for each
C of concern.6

The basic assumptions in what follows are that, for any first-order logic L, the L-proofs make up a category
of objects and that, moreover, this category can be also described completely within an appropriate typed
λ-calculus λ(L). The general concept to be disclosed is that of a λγ-theory (or λγ-calculus).

E.g., if L is the first-order classical logic CQ, λ(L) is a proper (conservative) extension of the ordinary
typed λ-calculus λτ , i.e., a type(d) λγ-theory (in λ-calculus, a typed λ-theory is a Post-consistent
extension of λτ ). Here, the reference to γ points out to a specific [typed] abstraction operator [intended
intuitive interpretation in proof-theory: the genuinely classical reductio ad absurdum].7On the other
hand, however, a (typed) λγ-calculus is, essentially, an equational system meant to establish the behavior
of abstract objects and admits of a (very specific) proof-interpretation (only) as one of its possible
intuitive interpretations. The identification (for a given logic L):

proof in L = meaning of a proof-term in some λ(L)

correlates thus an intuitive notion and a technical concept . Still, from a λ-calculus viewpoint, this
identification is theoretically dispensable [it is a claim about the world and not a piece of mathematical
evidence, so to speak]. The most general interpretation of the stratified λ(γ)-terms [directed asyn-
chronous process of information transfer under non-local control, say] falls likely out of the scope of
“proof-theory”, in the traditional (post-Hilbert) sense.

Logics and type-theoretic presentations. Let U be a fixed universe of discourse. Here, U contains the
individuals or the referential points of any (first-order) logic L. A type-theoretic presentation of L is a
structure [L] = < ‖−L,τL >, where ‖−L, τL are families of recursive predicates, such that

6Here, “distinct” means “falling apart”, in Brouwer’s terms. Notably, sameness and apartness were primarily given for
Brouwer and could be “reduced” to each other only in special circumstances, while the “falling apart” (of objects of mind) could
be grasped by positive acts, too. Whence a Brouwerian would eventually discard as inadequate the Western philosophical topos
on difference (Sophistes 254B sq.) and the traditional (essentially Aristotelian) view on negation as a “primitive” (operation
of the mind).

7Traditionally, referred to also under the label “reductio ad absurdum” is a specific instance of modus ponens (i.e., an
intuitionistically correct rule) which allows to conclude that ¬A (≡df [A → ⊥]) has a proof from the fact that there is a proof
of ⊥ (falsum/absurdum) under the assumption that there is an arbitrary proof of A. The classical reductio uses “negative”
information, concluding “positively” to the existence of a proof of A from the fact that a proof of ⊥ can be obtained from an
arbitrary negative assumption ¬A.
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(1) ‖−L = < ‖−L(U), ‖−L(H), ‖−L(Λ) > is the family of syntactic categories of L, viz.,
• ‖−L(U) contains the U-terms of L,
• ‖−L(H) contains the L-formulas,
• ‖−L(Λ) contains the proof-terms of L,

(2) τL = < `L, =L > generates the category of L-proofs.
In detail, ‖−L(U) establishes the admissible ways of referring to U-objects (individuals in U); notation:
‖−L t :: U (read: “t is a U-term (of/in L)”), ‖−L(H) establishes the admissible ways of referring to propositions
in L, notation: ‖−L A :: H (read: “A is an L-formula”), whereas ‖−L(Λ) establishes the admissible ways of
referring to L-proofs, notation: ‖−L a :: Λ (read: “a is a proof-term of L”). Moreover, `L is a stratification
criterion for the proof-terms of L and =L is an identity criterion for L-proofs. So, for any (first-order) logic L
admitting of a type-theoretic presentation [L], the criteria specified by τL yield a category of objects. In other
words, `L establishes the form of L-proofs, answering the question what is an arbitrary object within the
category of L-proofs, whereas =L allows to establish whether two arbitrary objects falling within the category
of L-proofs are to be accounted for as equal or distinct. In traditional terms, `L characterizes (in fact,
elliptically so) the consequence relation of L. However, the post-Fregean (or, better, post-Gentzen) tradition
in classical logic ignores any proof-identity criteria. The latter aspects have been developed theoretically, so
far, only within the (post-Brouwerian) tradition of intuitionistic proof-theory, specifically within the so-called
BHK [Brouwer-Heyting-Kolmogorov] interpretation of the Heyting (first-order) logic.
The present point of view is meant to extend the kernel of the “BHK-interpretation” to the classical (first-
order) logic (and, in fact, to any other “logic” which is worth being called so).

One of the immediate implications of the assumptions above is that the meta-theory of (any) logic (=
abstract system which owns the concept of a proof) must be also (a piece of) intuitionistic (mathematics).
Modulo the choice of terms, this tenet constitutes, certainly, one of the (few) points of agreement between
Brouwer and the formalist tradition.

The L-atoms. For a given first-order logic L, each syntactic category of [L] is generated from atoms (atomic
primitives). So the categories ‖−L(U) and ‖−L(Λ) are generated from free atoms or indeterminates (if L is
a quantifier-free logic, ‖−L(H) has free atoms, too).
Explicitly, for every (first-order) logic L, where P is an arbitrary primitive predicate symbol of L and
t ≡ (t1,. . . ,tn), with ‖−L t1,. . . ,tn :: U, the atoms of ‖−L are:

• U-atoms (U-variables, individual variables) in ‖−L(U): u, v,. . . , also decorated, in a set Varu,
• H-atoms in ‖−L(H), namely

• P[t], the “primes” of L, and
• ⊥L (falsum), standing for a constant false proposition, and, possibly, a primitive “dual” of ⊥L, viz.,
• >L (verum), standing for a constant true proposition,

• Λ-atoms (or proof-variables) in ‖−L(Λ): x, y, z, . . . , possibly decorated, making up a set Varλ.
Within an actual type-theoretic presentation [L] of L, the Λ-atoms of L are supposed to be primitively
regimented/“stratified” [this regimentation depends only on the specific structure of ‖−L(U) and ‖−L(H)].
Syntactically, the Λ-atoms are represented by “typed variables”, where the “type-symbols” are all and only
the objects generated by ‖−L(H).

In quantifier-free (“propositional”) logics L, the “free atoms” of ‖−L(H) are propositional (H-) variables,
ranged over by p, q, r, . . . , possibly with decorations and make up a set Varh. In the general first-order
case, there is no need for “free H-atoms”.

For first-order logics we have a supply of primitive predicate symbols (constants) P. The proper atomic types
(the “primes”) are constructed from these symbols and U-terms in the expected way. In particular, one may
oft want to have a primitive equality predicate (denoted by δL, say) in a first-order setting.
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Notation (Global syntactic conventions).

Where ‖−L t :: U, ‖−L A :: H, ‖−L a,b :: Λ and u ∈ Varu, p ∈ Varh, x ∈ Varλ, the syntactic notations
t[[u]], A[[u]], A[[p]], a[[u]], a[[x]], a[[u,x]], etc. indicate the fact that the variables u, p, x occur with a “free”
régime within t, A, a, resp. where “free” and “bound” is to be determined in each case separately,
relative to the specific structure of L. As ever, uniform substitution for the free U- and H-atoms is
shown by α[[u:=t]] (for ‖−L α :: U or ‖−L α :: Λ) and α[[p:=A]] (for ‖−L α :: U or ‖−L α :: Λ), resp. The
uniform substitution operator for the free Λ-atoms of L (notation: b[[x:=a]]) has a similar meaning, but
is subjected to additional “type-constraints”, depending on `L (to the effect that x and a must be “of
the same type”).

U-terms. In first-order logics, the U-terms are constructed from U-variables and a fixed stock of primitive
function symbols f, in the usual way. One has, in fact, the generic inductive scheme:

(U0) ‖−L u :: U, if u ∈ Varu,
(Uf) ‖−L t1,. . . ,tn :: U ⇒ ‖−L f(t1,. . . ,tn) :: U,

for any primitive n-ary f. For n = 0, f is a constant (standing for an element of U).

Type-syntax . The syntactic category ‖−L(H) yields the type-structure of [L]. As expected, ‖−L(H) is con-
structed inductively from H-atoms by closing under appropriate type-constructors. Traditionally, the latter
correspond to logic syncategoremata; among them are the so-called “logical constants” and the quantifiers
(“first-order” or “U-quantifiers”).

For propositional logics (with H-atoms), we may also consider “propositional” or “H-quantifiers”. In
the limit (Boolean) case, one obtains the so-called extended propositional logic.

In particular, any L admitting of a type-theoretic presentation is supposed to have a primitive binary type-
constructor →L, standing for implication in L. In this setting, an L-negation is also available “inferentially”,
by ¬LA := [A →L ⊥L]. Analogously, any first-order logic L which can be presented type-theoretically has
at least a (first-order) universal U-quantifier ∀L.

Roughly speaking, this specific choice of type-primitives corresponds to the view that “logic is [at least]
about inference and generality”. In fact, this is also the least choice we have to make in order to have
access to proper type-theoretic presentations. On a pure ideological level, one can also elaborate on
the above, by saying that there is no Toleranzprinzip in proof-theory (with “proof-theory” taken in the
technical sense of this paper). Indeed, an inadvertent choice of type-primitives might turn out to be
fatal (theoretically prohibitive, etc.) at a later stage.

For any logic L admitting of a type-theoretic presentation [L], the type-structure of [L] can be described
schematically . In detail, for any primitive n-adic atomic predicate P in L, where4L :: [H −→H] is a singulary
(one-place) primitive type-constructor of L, ◦L :: [H × H −→ H] is a binary primitive type-constructor of L,
and, for X ∈ { U,H }, QL[X] :: [[X −→ H] −→ H] is the abstraction-operator corresponding to a primitive
(first-order, resp. propositional) quantifier of L, the following inductive scheme gives the generic notation
for the type-structure of [L]:

(HP) ‖−L t1,. . . ,tn :: U ⇒ ‖−L P(t1,. . . ,tn) :: H,
(H⊥) ‖−L ⊥L :: H,
(H>) ‖−L >L :: H, (if >L is a primitive of L),
(H4) ‖−L A :: H ⇒ ‖−L (4LA) :: H,
(H◦) ‖−L A,B :: H ⇒ ‖−L (A ◦L B) :: H,

(HXQ) ‖−L A[[ξ]] :: H (ξ ∈ Var) ⇒ ‖−L (QL[X]ξ.A[[ξ]]) :: H, [X ∈ { U, H }, Var := Varu, Varh].

Given the above, the type-structure of any logic [L] is fully specified by listing the primitive type-constructors
(syncategoremata) of L.
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Examples. Where → stands for implication, ∧ and ∨ for conjunction and disjunction, resp., and ∀, ∃ for the
first-order quantifiers, [⊥,>,→,∧,∨,∀,∃] is a (very redundant) type-structure for the first-order classical logic
CQ, the Heyting logic HQ, Johansson’s Minimalkalkül MQ, etc. Of course, [⊥,→,∧,∀] and even [⊥,→,∀]
should suffice for CQ.

This scheme covers also type-structures for logics with modalities, via (H4), and/or propositional
quantifiers [Π,Σ], via (HXQ), for X ≡ H and Var := Varh. One can obtain, e.g., a type-theoretic
version of the (classical : Russell, ÃLukasiewicz, Tarski, etc.) “extended propositional logic” within a
[→,Π]-type-structure: as expected, the resulting proof-calculi are equational extensions of the so-called
“second-order typed λ-calculus”. For a discussion of the proof-theory of (first-order) modal logics
contained in Lewis’ (first-order) S5, see [Rezuş 91].

First-order proof-contexts. If the atoms of [L] are specified, we can say what is a (first-order) proof-context
(alternatively: an “assumption set”) for L, without making reference to the specific (type- and/or proof-
operator-) structure of L.

An assumption for L is an arbitrary (“virtual”) proof ; notation: [x : A], where ‖− x :: Λ (i.e., x is a free
Λ-atom) and ‖− A :: H. So, the assumptions are represented by typed/stratified proof-variables, where the
“types” are denoted by the formulas of L.

For first-order logics, the assumptions are U-parametric objects: where ‖− A :: H, the formula A may
depend on a finite number of U-parameters u1,. . . ,um, viz., on those U-variables that occur actually free in
A. Formally, a U-parameter has the status of a generic assumption [u : U], where ‖− u ::U (u ∈ Varu). Still,
U does not stand for a “type”.

A (first-order) proof-context (for L) is a finite sequence Γ of assumptions and U-parameters for L, such that
if [x : A] is an element of Γ and u (‖− u :: U) occurrs actually free in A, then the U-parameter [u : U] is
also an element of Γ. So, an arbitrary proof-context for L can be displayed as a sequence (better: a pair of
sequences)

Γ = [u1 : U]. . . [um : U] ^ [x1 : A1]. . . [xn : An], or
Γ = [u1]. . . [um] ^ [x1 : A1]. . . [xn : An], or even
Γ = [u1]. . . [um][x1 : A1]. . . [xn : An],

where the Ai’s (1 ≤ i ≤ n) are formulas of L. Here, the separator “^” is a notational expedient (that can
be absent) and is meant to contrast the U-parametric component (a “U-context”) Γu and the structural
component Γλ of Γ = Γu ^ Γλ. By convention, the empty sequence is a proof-context (notation: [ ]). If Γλ

is the empty sequence, the U-parametric component Γu of Γ = Γu ^ Γλ can be discarded (e.g., set Γ ≡ [ ],
if no confusion can arise).

For logics with a monoidal [simple, non-composite] consequence relation, the sequential structure of the proof-
contexts is, in fact, immaterial: one can use assumption sets instead of sequences, i.e., sets of assumptions
and U-parameters. This simplification makes some “structural” rules redundant, although it is not suited
for “hybrids” (Nuel D. Belnap Jr.), i.e., for logics with a composite consequence relation.

Propositional proof-contexts. In the case of (propositional) logics with explicit propositional quantifiers
the proof-contexts are H-parametric objects. That is, a propositional proof-context must be of the
form Γ = Γh ^ Γλ, where Γh := [p1 : H]. . . [pm : H] is a sequence/set of H-atoms and, as earlier,
Γλ := [x1 : A1]. . . [xn : An], such that the Ai’s (1 ≤ i ≤ n) have only H-parameters from among those
occurring in the list/set Γh.

Proof-statements. For any logic L, the basic objects of [L] are the proof-statements of L. Specifically, [L]
generates two distinct categories of proof-statements: the inference statements (in type-theoretic terms, we
use to speak about stratification conditions) and the proof-equations of L.
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An inference statement (a “type-assignment”, a “typing”, etc.) for L is of the form Γ `L a : A, where Γ
is a proof-context, ‖−L a :: Λ and ‖−L A :: H. As to its intended meaning, an inference statement is an
assumption form; in other words, “Γ `L a : A” is a statement about a proof under assumptions (reading “a
proves A under the assumptions contained in Γ”).

Intuitively, an inference statement Γ `L a : A says that the assumptions of Γ, i.e., the “proofs” [xi:Ai]
contained in Γ, are taken “in virtual (proof-) space”, whereas “a : A” is “an actual proof”. So “proving”
A in L, i.e., generating an inference statement of the form “Γ `L a : A”, can be viewed as an operation
of constructing an actual object a “of type A” from virtual information concerning the “types” of the
“ground components” of a. In fact, beyond the “virtual” information to be extracted from assumptions,
this involves only a set of L-specific (proof )-operators, (given by) the so-called (proper) “derivation
rules” of L.

A different kind of assumption form occurring in the proof-theory of first-order logics is epi-theoretic in nature
and concerns the U-parametrization of the elements of ‖−(H) and ‖−(U). These are statements Γu ‖−L A :: H
or Γu ‖−L t :: U and are meant to indicate the fact that (the formula) A, resp. (the U-term) t may contain
free U-variables that are among those contained in the “U-context” Γu ≡ [u1:U]. . . [um:U]. Equivalently,
we can write Γ ‖−L A :: H and Γ ‖−L t :: U, resp. instead, with the proviso that Γ = Γu ^ Γλ, for some
assumption-list/set Γλ.

Notation (Proof-contexts).

(1) Unless otherwise stated, the notation Γ[x:A] `L c : C means that the assumption [x : A] is not an
element of Γ.

(2) The notation Γ[[u]] indicates the fact that the proof-context Γ contains the U-parameter u. If Γ =
[u1:U]. . . [um:U] ^Γλ, Γ[u:U] or Γ[u] stands for Γ1[[u]] = [u1:U]. . . [um:U][u:U] ^ Γλ, where u is not
free in the formulas occurring in Γλ and, moreover, [u:U] is not one of the [ui:U]’s, 1 ≤ i ≤ m.

(3) Where Γi, 1 ≤ i ≤ n, are proof-contexts, their union is obtained by concatenating separately the
corresponding Γu- and Γλ-sequences and is denoted by Γ = Γ1 . . . Γn. Of course, if the proof-contexts
are thought of as being (assumption-) sets, the union of the Γi’s, 1 ≤ i ≤ n, is just set-union.

(4) We write Γ `L a iff Γ `L a : A, for some L-formula A, with ‖−L A :: H (omitting L-subscripts, if no
confusion can arise).

(5) Finally, Γ `L a1, . . . , an is shorthand for the conjunction (Γ `L a1) & . . . & (Γ `L an).
(6) Mutatis mutandis, if L is a (propositional) logic with H-atoms and propositional quantifiers, one

has analogous notational conventions for propositional proof-contexts. (In particular, the notation
“Γ[p:H] `L c : C” would mean that the H-parameter [p : H] is not an element of Γh in the propositional
context Γ = Γh ^ Γλ and that it does not occur free in the formulas of Γλ.)

A logic L is said to be proof-categorical (alternatively: L has a concept of a proof ) if there is a type-theoretic
presentation [L] of L such that

(Γ `L a : A1) & (Γ `L a : A2) ⇒ (A1 ≡ A2),

relative to [L] (where ≡ stands for syntactic identity). Type-theoretically, this requirement is known as
unicity of typing ([UT], for short). Intuitively, for any such an L, [UT-L] means that an L-proof is the proof
of a single proposition.

A proof-equation of L is a statement of the form a =L b, where Γ `L a,b for some Γ. For proof-categorical
logics L, [L] presents the L-proofs as a category of objects. In other words, if a1 =L a2 then, indeed,
Γ `L a1 : A, Γ `L a2 : A, for some proof-context Γ and some A, with ‖−L A :: H. Moreover, for each A,
with ‖−L A :: H, the pair τL = <`L,=L> specifies the proofs of A as a sub-category of L-proofs. The proof-
equations of a given logic L are shown by displaying the relevant proof-context and the type-information,
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i.e., the “proven proposition”, as, e.g., in “Γ `L a1 =L a2 : A”. Usually, the equational proof-system of some
[L] can be generated from the effective specification of a notion of proof-reduction.8

Proof-operators and proof-terms. The proof-syntax of a first-order logic L is thus obtained by generating the
syntactic category ‖−L(Λ) of proof-terms in L (p-terms, for short). The p-terms are generated inductively
from a denumerable set Varλ of Λ-atoms or proof-variables (p-variables, for short) x, y, z, . . . , (possibly
decorated), and, in specific first-order theories, based on L, a fixed set of proof-constants (p-constants), by
closing under several proof-operators. So, the non-atomic proof-terms are proof-forms associated resp. to
appropriate operator-forms. The syntactic (term-) forms can be considered as means of codifying the output
of the operator-forms.
In general, a proof-operator in L can be viewed as an abstraction operator acting on assumption forms
Γ `L c : C and/or Γ ‖−L t :: U, resp. i.e., as a partial map R from finite sets of assumption forms
to assumption forms. Here, the domain of R has elements of the form Γ |=L ϕ, where ϕ ≡ [c : C] or
ϕ ≡ [t :: U], with |=L used ambiguously for `L and/or ‖−L. Conveniently, the range of a proof-operator R
(i.e., its output) can be restricted to (proper) proof-statements Γ `L ϕ (with ϕ ≡ [c : C]). Each proof-operator
R can act either as a proper abstractor (for short, in absence of a better term: a sumptor) or as a selector .

The sumptors should correspond, more or less, to so-called “introduction” rules in N -style (“natural
deduction”-like) formulations of first-order logics, whereas the selectors are general application forms and
cover the action of the familiar N -style “elimination” rules. It is, however, more appropriate to think of
a proof-operator as being an introduction-rule for a specific proof-notation, i.e., a stipulation concerning
the admissible use of a given proof-form (“proof-term”), whereas only the stipulations concerning proof-
reduction processes (“détour eliminations”, etc.) might count as proper “elimination” rules. Otherwise,
the latter point of view is implicit in the Gentzen L-style (“sequent”) proof-systems, where the proper
derivation rules are viewed as “introduction” rules.

In the present setting, the meaning of a proof-operator is given unambiguously by a proper derivation rule
(think, e.g., in terms of the old paradigm: “functions are [given by] rules”). Indeed, if, for 1 ≤ i ≤ n,
ΓiΣi |= ϕi (written also ΓiΣi.ϕi, with ϕi ≡ [ci : Ci] or ϕi ≡ [ti :: U]) are assumption forms, Γi, Σi

are proof-contexts and [R](Σ1.ϕ1,. . . ,Σn.ϕn) is the proof-form (i.e., the “proof-term”) introduced by the
proof-operator R, the rule-form of R is

(R⇒) ΓiΣi |= ϕi, [1 ≤ i ≤ n] ⇒ Γ1. . . Γi. . . Γn ` [R](Σ1.ϕ1,. . . ,Σi.ϕi,. . . ,Σn.ϕn) : C,
while its operator-form

(Rλ) R(Γ1Σ1.ϕ1,. . . ,ΓnΣn.ϕn) = Γ1. . . Γn.[R](Σ1.ϕ1,. . . ,Σn.ϕn) : C,
is a compact way of referring to the rule-form, and says that Γ1. . . Γn.[R](Σ1.ϕ1,. . . ,Σn.ϕn) : C is the value
of R at the set { ΓiΣi |= ϕi : 1 ≤ i ≤ n }. Here, the Γi’s are the global [context-] parameters of R, whereas
the Σi’s are the local [context-] parameters of R.
Both (R⇒) and (Rλ) give the general form of a proof-operator R. This can be specialized to a so-called
mono-parametric form. The mono-parametric form of R is obtained from its general form by forcing an
identification of global context-parameters. In other words, the mono-parametric variant of (R⇒) is given by
(R[⇒]) ΓΣi |= ϕi, [1 ≤ i ≤ n] ⇒ Γ ` [R](Σ1.ϕ1,. . . ,Σi.ϕi,. . . ,Σn.ϕn) : C,

i.e., by a proof-operator with a single global context-parameter Γ which can be expressed by
(R[λ]) R(ΓΣ1.ϕ1,. . . ,ΓΣn.ϕn) = Γ.[R](Σ1.ϕ1,. . . , Σn.ϕn) : C.

In the case of most familiar (monoidal) logics (as, e.g., the classical, intuitionistic, “minimal” logics, etc.),
the mono-parametric proof-operators have the same strength as the general forms. This distinction becomes

8In logic, a notion of proof-reduction is the formal counterpart of the intuitive concept of a proof-détour elimination (cf.
[Rezuş 90]).
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effective only in logics where some “structural” rules (as, e.g., the so-called “contraction” rules) are absent
or are drastically restricted.

Concepts of consistency . The type-theoretic presentation of a logic yields two natural consistency con-
cepts: stratification consistency (or inferential consistency) and proof-consistency . A logic L is said to be
stratification-consistent (inferentially consistent) relative to a type-theoretic presentation [L], if it is not the
case that [ ] `L a : ⊥ for some a (‖−L a :: Λ). A proof-categorical logic L is proof-consistent relative to [L]
if it is not the case that Γ `L a1 = a2 : A, for any two L-proofs a1, a2 of A (Γ `L a1 : A, Γ `L a2 : A).
Given a logic L admitting of a type-theoretic presentation [L], stratification-consistency relative to [L] means
that the standard proof-concept of L is correctly formalized via [L], whereas proof-consistency relative to
[L] means that the category of L-proofs thereby isolated is non-trivial and that so are the sub-categories of
objects associated to the “true propositions” of L.

The proof-context rules. Beyond the set of proper derivation rules (defining its proof-operators), any (first-
order) logic requires specific proof-context rules, meant to state the proof-context transformations admissible
in (the proofs of) L. The proof-context rules of a logic L admitting of a type-theoretic presentation are special
(proof-) operators. These operators act, essentially, on the proof-context parts Γ of the proof-statements
Γ `L ϕ (ϕ ≡ [c : C]).
One can distinguish among structural context-rules, affecting the global context-parameters of a proper
proof-operator, and so-called “cut” rules, which take also into account the free variables of ϕ within proofs
of the form Γ `L ϕ, with ϕ ≡ [c : C], and are meant to define the global régime of the substitution operators
for U-and/or p-variables in proof-terms. For monoidal logics L admitting of a type-theoretic presentation
(i.e., for logics with a non-composite consequence relation), we can state the proof-context rules beforehand,
without reference to the specific (type- and/or proof-term-) structure of L. It is convenient to do this first
for the case where the proof-contexts are thought of as being sequences (of assumptions). The rules for
the contexts-as-[assumption]-sets view can be then obtained from this setting by leaving out the specific
information (“context-sensitive”, so-to-speak), meant to handle the sequential features of the proof-context
representation.
Let ϕ ≡ [c : C], for some c and C, with ‖−L c :: Λ and ‖−L C :: H. A generic (first-order) proof-context is
denoted by Γ = Γu ^ Γλ. What follows fits the description of proof-context behaviors in first-order monoidal
logics. Since the definition is schematic, we omit the L-subscripts.
Definition (“Sequential” proof-context rules).

1.1 “Structural” rules.
< I > [u1:U]. . . [um:U] ^ [x:A] ` x : A, if { u1, . . . , um } = FVu(A),
< K > Γ ` ϕ ⇒ Γ[x:A] ` ϕ,
< KW > Γ[x:A] ` ϕ ⇒ Γ[x:A][x:A] ` ϕ,
< W > Γ[x:A][x:A] ` ϕ[[x]] ⇒ Γ[x:A] ` ϕ[[x]],
< C > Γ[x:A][y:B] ` ϕ[[x,y]] ⇒ Γ[y:B][x:A] ` ϕ[[x,y]],
< Ku > Γu ^ Γλ ` ϕ ⇒ Γu[u:U] ^ Γλ ` ϕ,
< KWu > Γu[u:U] ^ Γλ ` ϕ[[u]] ⇒ Γu[u:U][u:U] ^ Γλ ` ϕ[[u]],
< Wu > Γu[u:U][u:U] ^ Γλ ` ϕ[[u]] ⇒ Γu[u:U] ^ Γ ` ϕ[[u]],
< Cu > Γu[u:U][v:U] ^ Γλ ` ϕ[[u,v]] ⇒ Γu[v:U][u:U] ^ Γλ ` ϕ[[u,v]].
1.2 “Cut”-rules.
< $K > Γ[x:A] ` ϕ ⇒ Γ ` ϕ, if x is not free in ϕ,
< $W > Γ[x:A][y:A] ` ϕ[[x,y]] ⇒ Γ[x:A][x:A] ` ϕ[[x,x]],
< $uK > Γu[u:U] ^ Γλ ` ϕ ⇒ Γu ^ Γλ ` ϕ, if u is not free in ϕ,
< $uW > Γu[u:U][v:U] ^ Γλ ` ϕ[[u,v]] ⇒ Γu[u:U][u:U] ^ Γλ ` ϕ[[u,u]],
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< $ > Γ1 ` a : A, Γ[x:A] ` ϕ[[x]] ⇒ ΓΓ1 ` ϕ[[x:=a]],
< $[u] > Γu ‖− t :: U, Γ[[u:U]] ` ϕ[[u]] ⇒ Γu(Γ[[u:=t]]) ` ϕ [[u:=t]].

For most familiar logics, this is, in fact, very redundant. Some remarks are in order.
(1) The $-rules are so-called “cut”-rules and – as noted above – are intended, in general, to establish a
purely formal régime for the manipulation of the substitution operators for U- and proof-variables (in U-
terms, formulas and/or proof-terms).9

(2) The “cut”-rules for U-variables (the $u-rules) are usually ignored in logic books [they are rather trivial,
indeed]. In particular, if Γ[[u:U]] = Γ1[u:U], where u is not in Γ1, the “cut”-rule < $[u] > becomes

< $u > Γu ‖− t :: U, Γ[u:U] ` ϕ[[u]] ⇒ ΓuΓ ` ϕ[[u:=t]].
(3) It is easy to see that, ceteris paribus, the “cut”-rules < $W > and < $uW > are special cases of the
general “cuts” < $ > and < $[u] >.
(4) The “weakening reversals” < $K > and < $uK > can be shown to be admissible (in the sense of
“admissible rule”, à la P. Lorenzen and H. B. Curry) for most logics (among which those of concern below).
(5) The rules < KW > and < KWu > are inverses of < W > and < Wu >, resp. but, clearly, the
duplications < K >, < KW > and < Ku >, < KWu > are due here to a notational accident, i.e., to the
fact that we have decided that “Γ[x:A]” (resp. “Γ[u:U]”) means that [x:A] (resp. [u:U]) is not in Γ (this is
meant to simplify the statement of proof-context conditions in proper derivation rules).
(6) Ceteris paribus, the joint effect of < K >, < I > can be obtained, in normal cases, by a “global
context-projection” rule (as, e.g., in Classical Automath, which is, essentially, a Minimalkalkül -like system):

< KΓ > Γ ` x : A, if [x : A] is in Γ.

Proof-contexts as assumption-sets. If the proof-contexts are thought of as (assumption-) sets, the “structural”
rules < KW >, < W >, < C >, < KWu >, < Wu >, < Cu > are redundant, while the “cut”-rules < $W >,
< $uW > become, resp.

< $W > Γ[x:A][y:A] ` ϕ[[x,y]] ⇒ Γ[x:A] ` ϕ[[x,x]],
< $uW > Γu[u:U][v:U] ^ Γλ ` ϕ[[u,v]] ⇒ Γu[u:U] ^ Γλ ` ϕ[[u,u]].

In detail, for the case of the proof-contexts-as-[assumption]-sets view, we should be also satisfied with the
following compact set of proof-context rules:
Definition (Proof-context [= “assumption set”] rules).

1.1 “Structural” rules.
< I > [u1:U]. . . [um:U] ^ [x:A] ` x : A, if { u1,. . . ,um } = FVu(A),
< K > Γ ` ϕ ⇒ Γ[x:A] ` ϕ,
< Ku > Γu ^ Γλ ` ϕ ⇒ Γu[u:U] ^ Γλ ` ϕ.
1.2 “Cut”-rules.
< $ > Γ1 ` a : A, Γ[x:A] ` ϕ[[x]] ⇒ ΓΓ1 ` ϕ[[x:=a]],
< $[u] > Γu ‖− t :: U, Γ[[u:U]] ` ϕ[[u]] ⇒ Γu(Γ[[u:=t]]) ` ϕ[[u:=t]],

where the addition of (the admissible “cut” rules) < $K > and < $uK > is facultative. As earlier, we can
also replace < $[u] >, in this setting, by its special case:

< $u > Γu ‖− t :: U, Γ[u:U] ` ϕ[[u]] ⇒ ΓuΓ ` ϕ[[u:=t]],
whereas, for the classical, intuitionistic, “minimal”, etc. logics, one can also replace < I > and < K > by
< KΓ >.

9Here, one has to deal with “formal (symbolic) manipulations as effected by any (symbolic) agent, no matter whether the
latter one is human or mechanistic in nature”.
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Unlike the above, the proof-context rules for (first-order) logics L with a composite consequence relation
cannot be stated globally: their exact form depends on the (local) proof-operator structure of L. (See,
e.g., mutatis mutandis, [Belnap 82].)
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Chapter II

Proof-syntax

Classical logic and sub-systems: the type-structure. We rely next on type-structures [⊥,→,(∧),∀], suited for
the first-order classical logic CQ, and [⊥,→,∧,∨,∀,∃], suited for Minimalkalkül MQ, the Curry logic DQ,
the Heyting logic HQ, etc. For heuristic purposes, the structure [⊥,→,∧,∨,∀,∃] is also considered next as an
alternative type-structure for CQ.

The spelling of (first-order) formulas. We spare on parentheses as usually, by assuming associativity to
the left, omitting the outermost pair, and by applying familiar conventions concerning priority in parsing
by dot-separators. So A → B → A → A stands for (((A → B) → A) → A), and, with dot-separators,
A → .A → B → B stands for (A → ((A → B) → B)).

Definitions. For first-order classical logic CQ, as formulated relative to a type-structure [⊥,→,∧,∀], the
following are taken as standard abbreviations:

• (¬A) := (A → ⊥) [inferential negation],
• (>) := ¬⊥ [≡ (⊥ → ⊥)] [internal verum],
• (A ∨ B) := ¬(¬A ∧ ¬B) [disjunction],
• (A ↔ B) := (A → B) ∧ (B → A) [equivalence],
• (∃u.A[[u]]) := ¬(∀u.(¬A[[u]])) [existence].

Remark (Definable type-constructors: proof-theoretic relevance). For the proof-theory of CQ (formulated
relative to [⊥,→,∧,∀]-primitives), the choice of these definitions is not arbitrary . Indeed, we must be able to
associate derived proof-operations to a definable type-constructor in order to use it in a proof- theoretically
relevant way (see details below). In general, it is not the case that any definition that makes sense on a
provability-level (truth-functionally, etc.) should be also useful/relevant on a proof-level. In the absence
of a primitive ∧ (conjunction), one can define, in CQ, relative to [⊥,→,(∀)], “algebraic” type-constructors
analogous to ∧ and ∨, still admitting of well-behaved proof-operations, as, for instance, either

• (A ⊗u B) := ¬(A → ¬B) [(strong) internal conjunction, default: ⊗ ≡ ⊗u],
• (A ⊕u B) := ¬(¬A ⊗u ¬B) [(strong) internal disjunction, default: ⊕ ≡ ⊕u],
or
• (A [] B) := (¬A → B) [weak disjunction],
• (A ⊕t B) := (A [] ¬¬B) [weak internal disjunction],
• (A ⊗t B) := ¬(¬A ⊕t ¬B) [weak internal conjunction],
or
• (A ⊕> B) := (A → B → B) [(Tarski) inferential disjunction],
• (A ⊗> B) := ¬(¬A ⊕> ¬B) [(Tarski) inferential conjunction],

(à la Alfred Tarski10), etc. with, in each case (where ⊗ is used ambiguously), a simulated equivalence
[internal equivalence]

• (A ↔⊗ B) := (A → B) ⊗ (B → A).
Each one of the [⊗,⊕]-pairs above admits of “intensional” proof-operations. This means that the usual exten-
sionality conditions for the associated proof-operators should fail; e.g., the pairings (pairs-cum-projections)
that can be associated to any one of the ⊗’s won’t be “surjective” (and analogously about extensionality
properties for ⊕-operations). In the present setting, by the way, things like the “weak” disjunction [] are not
productive proof-theoretically .

10First proposed a logic seminar of Jan ÃLukasiewicz, ± 1921.
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As expected, ∨, ∃ are taken as primitive notions in Minimalkalkül MQ, the “complete refutability logic”
DQ of Curry and in Heyting’s logic HQ. This notation is also used with subscript-decorations, whenever
necessary (subscripts: m, d , h, resp.)

Syntactic notions. The syntactic concepts of a subterm of a U-term, subformula, free/bound U-variable
(occurring) in a U-term (resp. formula) are supposed to be introduced in the usual way. In what follows,
we use FVu(t), BVu(t), FVu(A), BVu(A) resp., in order to refer to the corresponding sets of free/bound
variables. A U-term t (resp. a first-order formula A) is U-closed if FVu(t) = ∅ (resp. FVu(A) = ∅), else it is
U-open. The possibility of relettering systematically the bound U-variables (αu-conversion) of a provability
language is assumed tacitly. Everywhere in the sequel, the “windows” (or the display brackets) [[. . . ]] do not
belong to the object-syntax; they are supposed to display internal components. So, if ξ is a “free atom”,
“α[[ξ]]” means that ξ may occur free in the syntactic environment α[[. . . ]]. The uniform substitution operators
for U-variables are shown by “α[[u:=t]]”, where u ∈ Varu, ‖−L t :: U and ‖−L α :: U or ‖−L α :: H, for any
logic L of concern. They are supposed to be defined in the expected way.

Boolean proof-terms and proof-operators. The formal proof-notation for CQ is given by the following scheme,
recording the structure of the Boolean proof-operators associated to a primitive type-structure of the form
[⊥,→,∧,∀].
Definition (Boolean proof-terms/proof-operators for [⊥,→,∧,∀]).
(1) A proof-variable is a proof-term.
(2) If a, b, e, f are proof-terms, t is a U-term and A, B, C are formulas then the following are proof-terms

[resp. proof-operator forms]:
(21) positive sumptors:
• λx:A.b[[x]] [≡ λ`([x:A].b[[x]]:B)],
• <a:A,b:B> [≡ λ\(a:A,b:B)],
• !u.a[[u]] [≡ λ∪([u:U].a[[u]]:A[[u]])],
(22) the “prime” negative sumptors: where A is a “prime” formula,
• γx:¬A.e[[x]] [≡ γ`([x:¬A].e[[x]]:⊥)],
(23) “application forms” (special positive selectors):
• f(a) [≡ @`(f:A→B,a:A)],
• p1(f:A∧B) [≡ @\

1(f:A∧B)],
• p2(f:A∧B) [≡ @\

2(f:A∧B)],
• f[t] [≡ @∪(f:∀u.A[[u]],t:U)].

Here, the “negative” sumptors (γ-abstractions) of the form γx:¬C.e[[x]] are defined only for “prime” formulas
C. From this, the full λγ-(proof)-syntax can be obtained by setting, inductively, for C ≡ ⊥, (A→B), (A∧B),
∀u.A[[u]], resp.,
Definition (General γ-abstraction for [⊥,→,∧,∀]-structures).

[γ⊥]: γx:>.e[[x]] := e[[x:=Ω]], where Ω ≡ λx:⊥.x,
[γ→]: γx:¬(A→B).e[[x]] := λx0:A.γx1:¬B.e[[x:=λz:(A→B).x1(z(x0))]],
[γ∧]: γx:¬(A∧B).e[[x]] := < a : A, b : B >, where

a ≡ γx1:¬A.e[[x:=λz:(A∧B).x1(p1(z:A∧B))]], and
b ≡ γx2:¬B.e[[x:=λz:(A∧B).x2(p2(z:A∧B))]],

[γ∀]: γx:¬(∀u.A).e[[x]] := !v.γx1:¬A.e[[x:=λz:(∀u.A).x1(z[v])]], [u 6≡ v],
such that the proof-variables x0, x1, x2, resp. and the U-variable u are fresh for e[[x]].11

11This proviso can be stated in more rigorous terms, of course, as soon as we are able to identify formally the bound and
free p-variables of a proof-term; see below.
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In what follows, the primitive proof-term stratification rules and the equational postulates of CQ will be
stated, conveniently, for “prime” γ-abstractions, whereas the corresponding general forms are shown to be
derivable. As usually, we write (fa) for f(a), omitting oft the outermost pair of parentheses. Alternatively,
one can also write pi[[A,B]](f), or just pi(f), for pi(f:A∧B) [i := 1,2], as well as <a,b> for <a:A,b:B>, if no
confusions are likely to occur.

Putting the γ’s aside, this brings us back to a rather standard λ-calculus notation, with perhaps, as
only idiosyncrasy, the use of a familiar ! [= λ∪], at a proof -level, for the U-generalization operation
[mnemonics: “(λ)-abstraction over U” or yet “(functional) abstraction over a fixed universe (of individ-
uals)”]. Casually, other people have got a bare λ instead, or an upper-case Λ, or yet a

∧
, in slightly

different a context: we have better uses for the latter three symbols, already rather overloaded. Other-
wise, the basic notational habits are here those common in mathematical practice, so that the logician’s
use-and-mention etiquette is nearly always ignored: this kind of shorthand is not known to generate
confusion by itself. . .

Remark (Extensional pairing in [M,H,C]Q). In a Boolean setting based on at least [⊥,→], the conjunction
and the associated proof-operators (pairs-cum-projections) count as redundant (and analogously for disjunc-
tion). This is not exactly the case, once we are also interested in the equational behaviors of these operators.
As is well-known from the ordinary (“simple”) typed λ-calculus, the equational conditions defining an ex-
tensional (“surjective”) pairing cannot be simulated in purely inferential terms12,whereas the addition of the
“negative” sumptor γ does not (and can not) change this situation.

Remark (General positive selectors and “appplication forms”). In the above, the standard “application
forms” (i.e., the so-called “functional” application, the projections and the instantiation, resp.) are familiar
constructs implicit in “natural deduction” (N -style) systems of logic. They can be obtained as special cases
of the general positive selectors (proof-term forms [resp. proof-operator forms]):

• ∧
`(y:B).c[[y]] ♦ f(a) [≡ ∧

`([y:B].c[[y]]:C,f:A→B,a:A)],
• ∧

\(x:A,y:B).c[[x,y]] ♦ f [≡ ∧
\([x:A][y:B].c[[x,y]]:C,f:A∧B)],

• ∧
∪(x:A[[t]]).c[[x]] ♦ f[t] [≡ ∧

∪([x:A[[t]]]).c[[y]]:C,f:∀u.A,t:U)].
Indeed, we have – with the latter three taken as primitives, in place of the “standard application forms” –
the following definitions (proof-term forms [resp. proof-operator forms]):

• f(a) [≡ @`(f:A→B,a:A)] :=
∧
`(y:B).y ♦ f(a),

• p1(f:A∧B) [≡ @\
1(f:A∧B)] :=

∧
\([x:A][y:B]).x ♦ f),

• p2(f:A∧B) [≡ @\
2(f:A∧B)] :=

∧
\([x:A][y:B]).y ♦ f),

• f[t] [≡ @∪(f:∀u.A[[u]],t:U)] :=
∧
∪(x:A[[t]]).x ♦ f[t]).

Conversely, the general positive selectors are definable, in CQ, MQ, HQ, etc., from the standard “application
forms”, by uniform substitution, viz. by

• ∧
`(y:B).c[[y]] ♦ f(a) := c[[y:=f(a)]],

• ∧
\(x:A,y:B).c[[x,y]] ♦ f := c[[x:=p1(f:A∧B)]][[y:=p2(f:A∧B)]],

• ∧
∪(x:A[[t]]).c[[x]] ♦ f[t] := c[[y:=f[t]]].

Finally, in specific first-order theories based on CQ, the proof-constants are proof-terms, too. As expected, a
proof-constant stands always for a given – supposedly known – primitive proof, e.g., for the evidence behind
[= “the proof of”] some axiom.13

12This follows from an undefinability result in type-free λ-calculus, due to Henk Barendregt [74]. The equational behavior
of the “intensional” algebraic proof-operators is discussed later.

13Cf. with the “primitive notions” (as expressed by the so-called PN-lines) of most Automath systems. For the sake of
completeness, we may choose to represent such “notions” schematically, by an Ω-symbol, say, while using type-structures with
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[Other ] negative proof-operators. In a genuinely Boolean setting, with standard [i.e., Ockham/De Morgan]
definitions for A ∨ B [≡df ¬(¬A ∧ ¬B)] and ∃u.A[[u]] [≡df ¬(∀u.¬A[[u]])], one can define the proof-operators
associated to (the Boolean) ∨, ∃, resp., viz. the negative sumptors j, J and the negative selectors

∨
\,∨

∪, resp. Indeed, the following definitions (using positive proof-operators and γ-abstractions) preserve the
extensional proof-behaviors of the Boolean [∨,∃]-proof-operators.

Definition (Derived negative Boolean [∨,∃]-proof-operators).
(1) Boolean ∨-proof-operators:
• j(x:¬A,y:¬B).e[[x,y]] := λz:(¬A∧¬B).e[[x:=p1(z)]][[y:=p2(z)]],
• ∨

\(z:¬C).f ♦ [λx:A.e1[[x,z]],λy:B.e2[[y,z]]] := γz:¬C.f(<λx:A.e1[[x,z]],λy:B.e2[[y,z]]>).

(2) Boolean ∃-proof-operators:
• J(x:¬A[[t]]).e[[x]] := λz:(∀u.¬A[[u]]).e[[x:=z[t]]],
• ∨

∪(z:¬C).f ♦ [!u.λx:A[[u]].e[[u,x,z]]] := γz:¬C.f(!u.λx:A[[u]].e[[u,x,z]]]).

If we are relying on a type-structure [⊥,→,∧,∨,∀,∃], with ∨ and ∃ among the primitives, we must add also
the negative sumptors and the negative selectors to the definition of Boolean proof-terms/operators. So,
although redundant, the most general scheme that can be used for the introduction of the proof-operators
of CQ, relative to [⊥,→,∧,∨,∀,∃], should be the following one:

Definition (Boolean proof-terms/operators for [⊥,→,∧,∨,∀,∃]).
(1) A proof-variable is a proof-term.
(2) If a, b, c, e, f are proof-terms, t is a U-term and A, B, C are formulas then the following are proof-terms

(proof-term forms [resp. proof-operator forms]):

(21) positive sumptors:
• λx:A.b[[x]] [≡ λ`([x:A].b[[x]]:B)],
• <a:A,b:B> [≡ λ\(a:A,b:B)],
• !u.a[[u]] [≡ λ∪([u:U].a[[u]]:A[[u]])],
(22) negative sumptors:
• γx:¬A.e[[x]] [≡ γ`([x:¬A].e[[x]]:⊥)], [A arbitrary: unrestricted γ`],
• j(x:¬A,y:¬B).e[[x,y]] [≡ γ\([x:¬A][y:¬B].e[[x,y]]:⊥)],
• J(x:¬A[[t]]).e[[x]] [≡ γ∪([x:¬A[[t]]].e[[x]]:⊥)],
(23) (general) positive selectors:
• ∧

`(y:B).c[[y]] ♦ f(a) [≡ ∧
`([y:B].c[[y]]:C,f:A→B,a:A)],

• ∧
\(x:A,y:B).c[[x,y]] ♦ f [≡ ∧

\([x:A][y:B].c[[x,y]]:C,f:A∧B)],
• ∧

∪(x:A[[t]]).c[[x]] ♦ f[t] [≡ ∧
∪([x:A[[t]]]).c[[x]]:C,f:∀u.A,t:U)].

(24) negative selectors:
• ∨

\(z:¬C).f ♦ [λx:A.e1[[x,z]],λy:B.e2[[y,z]]] [≡ ∨
\(f:A∨B,[x:A][z:¬C].e1[[x,z]]:⊥,[y:B][z:¬C].e2[[y,z]]:⊥],

• ∨
∪(z:¬C).f ♦ [!u.λx:A[[u]].e[[u,x,z]]] [≡ ∨

∪(f:∃u.A[[u]],[u:U][x:A[[u]]][z:¬C].e[[u,x,z]]:⊥)].

The latter definition yields also, in a straightforward way, the proof-operator structure of an appropriate
Gentzen L-style (“sequent”) presentation for CQ.

Actually, most proof-operators encountered in the “sequent” proof-systems for CQ, HQ, MQ, etc.
can be obtained from the above by specializing the global context-parametrization of the corresponding
selectors. So, the present point of view amounts to a generalization of both the “natural deduction”

a primitive >-object [verum]: in this case, one needs also a special stratification stipulation to the effect that Ω “proves” >,
in any proof-context. Any attempt to set up a priori general stipulations on the equational behavior of Ω looks debatable,
however. In what follows, we assume – in agreement with a wise tradition – that there is no such a thing like “the common
[theoretical] content of all first-order theories” (beyond, perhaps, formal logic). See also [Rezuş 90] for the specifics of this
approach.
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and the “sequent” formulations of the proof-theory of familiar first-order logics (classical, Heyting,
“minimal”, etc.).

Remark (Local γ-definability). In the extended Boolean setting (based on [⊥,→,∧,∨,∀,∃]) the γ-abstractor
is definable in terms of, say, ∨-proof-operators and special instances of it. This is analogous to the way
one can simulate intuitionistically local γ-operators γf :A in terms of HQ-proof-operators, for each formula
A in [⊥,→,∧,∨,∀,∃] and each (Heyting) proof-term f such that Γ ` f : ¬hA ∨h A holds in the Heyting
proof-calculus (cf. below).

Remark (Intensional algebraic proof-operators in CQ).

(1) The stratification properties of a [Boolean] pairing can be simulated with the means of a proof-structure
based on [⊥,→] alone. Set, e.g., A ⊗ B := ¬(A → ¬B), as above [i.e., using ⊗ ≡ ⊗u], with associated
proof-forms:

• ≺ a:A, b:B Â [≡ λ⊗(a:A,b:B)] := λz:(A→¬B).z(a)(b), [provided z /∈ FVλ(a,b)],
• π1(c:A⊗B) [≡ @⊗

1 (c:A⊗B)] := γz0:¬A.c(λx0:A.λy0:B.z0(x0)),
• π2(c:A⊗B) [≡ @⊗

2 (c:A⊗B)] := γz0:¬B.c(λx0:A.z0), [provided z0 /∈ FVλ(c)],

and, possibly, mutatis mutandis, as earlier,

• ∧
⊗[x:A,y:B].c[[x,y]] ♦ f [≡ ∧

⊗(f:A⊗B,[x:A][y:B].c[[x,y]]:C)] := c[[x:=π1(f:A⊗B)]][[y:=π2(f:A⊗B)]],

where we may also write πi(c) [or π⊗i (c), perhaps] and ≺ a, b Â resp., say, for the (intensional) “pro-
jections” πi(c:A⊗B), [i := 1,2], and “pairs” ≺ a:A, b:B Â, resp., if no confusions are likely.

(2) If we rely on [⊥,→] alone, there are analogous simulations of the Boolean ∨ with associated “intensional”
operators γ⊗ [= η] and

∨
⊗. Set, e.g., for A ⊕ B := ¬(¬A ⊗ ¬B), [with ⊗ ≡ ⊗u and ⊕ ≡ ⊕u], in

analogy with the definitions of γ\ [≡ j] and
∨

\ above:

• η(x:¬A,y:¬B).e[[x,y]] [≡ γ⊗([x:¬A][y:¬B].e[[x,y]]:⊥)]
:= λz:(¬A⊗¬B).e[[x:=π1(z)]][[y:=π2(z)]],

• ∨
⊗(z:¬C).f ♦ [λx:A.e1[[x,z]],λy:B.e2[[y,z]]] [≡ ∨

⊗(f:A⊕B,[x:A][z:¬C].e1[[x,z]]:⊥,[y:B][z:¬C].e2[[y,z]]:⊥]
:= γz:¬C.f(≺ λx:A.e1[[x,z]]:¬A, λy:B.e2[[y,z]]:¬B Â).

(3) A completely similar situation obtains for the remaining (classically) definable pairs [⊗t,⊕t], [⊗>,⊕>],
say, mentioned above. The simulation of the corresponding proof-operators in Boolean inferential terms
is straightforward and is left as an exercise.14

Syntactic notions. The notions of a subterm, free and bound U- and proof-variable (occurring) in a proof-
term are supposed to be defined, mutatis mutandis, as usually in typed λ-calculi. If a is a p-term, the
corresponding sets of free/bound U- resp. p-variables are denoted by FVu(a), BVu(a), FVλ(a), BVλ(a)
resp. A p-term a is U-closed if FVu(a) = ∅, p-closed if FVλ(a) = ∅ and closed if FVu(a) = FVλ(a) =
∅. The closed p-terms are called Boolean proof-combinators. One defines analogously the U-open, p-open
and open p-terms. As above, the “window brackets” [[. . . ]] are metalinguistic artifices used to show the
“internal” structure of a proof-term. E.g., “c[[x]]” indicates the fact that the p-variable x has (possibly void)
free occurrences in c[[x]]. The substitution operators in proof-terms are shown by “c[[x:=a]]”, “c[[u:=t]]”, resp.
They are supposed to be defined in the expected way. Throughout in what follows, we assume tacitly an
appropriate notion of α-conversion (i.e., systematic relettering) ≡α for the bound U- and p-variables of a
p-term and identify the resulting proof-term congruence relation with the syntactic identity ≡.

14Certainly, within [⊥,→,(∀)]-type-structures, many other intensional variants – more involved, although less interesting
– for [⊗,⊕] are possible: in each case, the associated proof-operators would share intended stratification behaviors, whereas the
equational behavior induced by the relevant λγ-postulates should be rather weak .
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Syntactic proof-environments. It is useful to have some notation for syntactic proof-environments. The notion
of a syntactic proof-environment (or applicative context , p-env , for short) can be introduced intuitively.15Let
• be an arbitrary symbol, distinct from those occurring already in the primitive proof-syntax. If a[[x]] is
a proof-term containing a single occurrence of a free proof-variable x, then the proof-environment a[[•]] ≡
a[[x:=•]] is the word obtained from a[[x]], by substituting • for the actual occurrence of x in a. The dummy
“•” plays here the rôle of a “hole-marker” in a. Formally, one defines p-env’s by induction, in the obvious
way.

Notation (Syntactic proof-environments).

We let ϕ¿•À (possibly decorated) range over p-env’s. If a is a p-term and ϕ¿•À is a p-env then
ϕ¿aÀ≡ ϕ¿•:=aÀ. Here ϕ¿aÀ is the p-term obtained by substituting a for the dummy • in ϕ¿•À,
provided a does not contain free U- and p-variables that are bound in ϕ¿•À (i.e., U- and p-variables
occurring within the scope of an abstractor, “hidden” in ϕ¿•À).

This allows the use of “windows” and substitutions inside p-envs. Example. If ϕ¿•À is a p-env, then
we can write ϕ¿ x(γy:¬A.c[[x,y]]) À and ϕ¿ c[[x:=z]][[y:=z]] À, without ambiguity, assuming that the free
p-variables x, z are not captured by a variable binder in ϕ¿•À (and similarly about the free U- and
p-variables of c). In such cases we are still allowed to “bind” x or z ouside the p-env ϕ¿•À, by, e.g.,
λx:¬A.ϕ¿ x(γy:¬A.c[[x,y]]) À or γz:¬A.ϕ¿ c[[x:=z]][[y:=z]] À, etc.

Proof-operators/proof-terms in Minimalkalkül and the Heyting logic. The positive sumptors and the (general)
positive selectors – as well as the standard “application forms” – listed above are, in fact, Minimalkalkül
proof-operators and, therefore, they make sense intuitionistically, too (that is: they are proof-operators of
the first-order Heyting logic HQ).

As regards the [∨,∃]-proof-operators, the proof-theory of MQ – essentially, the first-order fragment of Martin-
Löf’s [84] constructive type theory – and HQ would allow as meaningful only the positive uses of the
Boolean negative [∨,∃]-proof-operators. In a Boolean setting, this limitation admits of a formal – abstract –
characterization.

We consider first MQ-proof-structures. Relative to proof-languages based on a [⊥,→,∧,∨,∀,∃]-type-structure,
the “positive” (“minimal”) contents of the Boolean negative sumptors (i.e., the “classical injections”) j, J
resp., and the negative selectors

∨
\ and

∨
∪ resp., can be recorded by the following

Definition (“Minimal” [∨,∃]-proof-operators: instantiation).

(1) “Minimal” [∨,∃]-injections:

• j1[[A,B]](a:A) := j(x:¬A,y:¬B).x(a), [x, y /∈ FVλ(a)],
• j2[[A,B]](b:B) := j(x:¬A,y:¬B).y(b), [x, y /∈ FVλ(b)],
• [t,a:A[[t]]] := J(z:¬A[[t]]).z(a), [z /∈ FVλ(a)].

(2) “Minimal” [∨,∃]-selectors:
• t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) :=

∨
\(z:¬C).f ♦ [λx:A.z(c1[[x]]),λy:B.z(c2[[y]])],

[z /∈ FVλ(c1[[x]],c2[[y]])],
• q(f,[u:U][x:A[[u]]].c[[u,x]]:C) :=

∨
∪(z:¬C).f ♦ [!u.λx:A[[u]].z(c[[u,x]])],

[z /∈ FVλ(c[[u,x]]),u /∈ FVu(C)].

If confusions are unlikely, we may leave out [some/all] type-parameters, writing, e.g., also ji[[A1,A2]](ai) for
ji[[A1,A2]](ai:Ai) [i := 1,2], [t,a] for [t,a:A[[t]]] and t(f,[x:A].c1[[x]],[y:B].c2[[y]]), resp. q(f,[u:U][x:A[[u]]].c[[u,x]])

15Like its close relative, used currently in theoretical computer science, this ingredient reflects a local notational policy
and – as far as the present work is concerned – should not be confused with the concept of a proof-context [= virtual proof-set,
“assumption-set”].
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for t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) resp. q(f,[u:U][x:A[[u]]].c[[u,x]]:C). As a notational alternative, we shall
use oft the operator-form Jm(a:A[[t]]) for [t,a:A[[t]]] (i.e., for the “minimal” ∃-injection).

Remark (“Minimal”-[∨,∃]-proofs and “negative” assumptions). From the above it should be obvious that
the “minimal” instances of the Boolean negative [∨,∃]-proof-operators obey a general principle that could be
expressed by the recommendation: “do never use negative information in [∨,∃]-proofs” (or just: “take positive
contents only”). In other words, the explicit “negative” assumptions, functioning as local context-parameters
in a Boolean proof-operator are not used actually in the MQ-version of the operator. For instance, if the
proof-variable z is not in FVλ(c1[[x]],c2[[y]]), the negative MQ-selector t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) : C
represents a special (case of the Boolean) operator-form∨

\(f:A∨B,[x:A][z:¬C].z(c1[[x]]):⊥,[y:B][z:¬C].z(c2[[y]]):⊥) : C,
(term-form:

∨
\(z:¬C).f ♦ [λx:A.z(c1[[x]]), λy:B.z(c2[[y]])]).

In the case of the “minimal” ∨-injections, the “positive only” policy amounts to a splitting (of the action)
of the Boolean injection γ\ [≡ j] (into separate actions):

γ\([x:¬A][y:¬B].x(a):⊥) ≡ j(x:¬A,y:¬B).x(a) ≡ j1[[A,B]](a:A),
γ\([x:¬A][y:¬B].y(b):⊥) ≡ j(x:¬A,y:¬B).y(b) ≡ j2[[A,B]](b:B),

where x, y are not in FVλ(a) resp. FVλ(b). A side-effect of the restriction is in the fact that the resulting
(special) injections ji[[A,B]], [i := 1,2], become type-parametric in a sense which is not intended in the general
Boolean case (!), where the actual dependencies must be expressed in terms of proof-[term]s and not in terms
of types [“propositions”/formulas]. Clearly, this type of restriction applies uniformly to both the ∨- and the
∃-proof-operators.
The Heyting logic HQ extends the “positive limiting” policy to the action of the (negative) inferential proof-
operators (i.e., in the present setting, to the γ-abstractions), with, also, an unintended type-parametrization
as a side-effect.16

Without [∨,∃]-(proof)-primitives, we can simulate, in a Boolean setting, the “positive”/“minimal” proof-
operators along the general pattern displayed above. Specifically, relative to the [⊥,→,∧,∀]-type-structure,
in view of the standard – Boolean – definitions of ∨, ∃ and the associated proof-operators j,

∨
\, resp. J,∨

∪, one has the following identities (turned into definitional stipulations):
Definition (“Minimal” [∨,∃]-proof-operators: Boolean simulation).
(1) “Minimal” [∨]-proof-operators:

• j1[[A,B]](a:A) := λz:(¬A∧¬B).p1(z)(a), [z /∈ FVλ(a)],
• j2[[A,B]](b:B) := λz:(¬A∧¬B).p2(z)(b), [z /∈ FVλ(b)],
• t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) := γz:¬C.(f)<λx:A.z(c1[[x]]):¬A,λy:B.z(c2[[y]]):¬B>,

[z /∈ FVλ(c1[[x]],c2[[y]])],
(2) “Minimal” [∃]-proof-operators:

• [t,a:A[[t]]] [≡ Jm(a:A[[t]])] := λz:(∀u.¬A[[u]]).z[t](a), [z /∈ FVλ(a)],
• q(f,[u:U][x:A[[u]]].c[[u,x]]:C) := γz:¬C.f(!u.λx:A[[u]].z(c[[u,x]])), [z /∈ FVλ(c[[u,x]]),u /∈ FVu(C)].

It is easy to establish the fact that the “minimal” injections and selectors thereby defined do actually
correspond to the intended Minimalkalkül proof-operators, i.e., to the [∨,∃]-proof-operators of the Johansson
MQ-logic, and therefore also to intuitionistic [Brouwerian] proof-operators. Notably, these operators can
be shown to satisfy the expected extensionality assumptions.
As suggested in the above, there are analogous – though “intensional” – simulations of the MQ [∧,∨]-proof-
operators in terms of the Boolean proof-operators associated to [appropriate definitions of] ⊗ and ⊕, with,

16For details, see the discussion of the ω-operator(s) appearing below.
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e.g., A⊗B ≡ A⊗uB ≡ ¬(A→¬B), A⊕B ≡ A⊕uB ≡ ¬(¬A⊗u¬B) ≡ ¬¬(¬A→¬¬B), etc. It is immediate that
the proof-operators that can be associated to the definable (Boolean) pairs [⊗,⊕], listed earlier, specialize
(“positively”) to analogous – although (equationally) distinct – “intensional” MQ-operators [exercise].

Beyond Minimalkalkül 1: “Clavian” instances of the Boolean [∨,∃]-proof-operators. The Boolean “injections”
j, J, resp. and the Boolean [∨,∃]-selectors admit of slightly more general instantiations than in the case of
the Minimalkalkül notions. These are “Clavian” variants of the Boolean [∨,∃]-proof-operators. Indeed, the
corresponding rule-forms require “Clavian” hypotheses, i.e., proof-patterns Γ[x:¬A] ` a[[x]] : A (as in the
premise of the so-called “Rule of Clavius”: ¬A ‖− A ⇒ ‖− A).

Definition (“Clavian” [∨,∃]-proof-operators: instantiation).

(1) “Clavian” [∨]-proof-operators:

• j1(x:¬A, y:¬B).a[[x,y]] := j(x:¬A,y:¬B).x(a[[x,y]]),
• j2(x:¬A,y:¬B).b[[x,y]] := j(x:¬A,y:¬B).y(b[[x,y]]),
• td(z:¬C).f ♦ [λx:A.c1[[x,z]]:C, λy:B.c2[[y,z]]:C] :=

∨
\(z:¬C).f ♦ [λx:A.z(c1[[x,z]]), λy:B.z(c2[[y,z]])],

(2) “Clavian” [∃]-proof-operators:
• Jd(x:¬A[[u:=t]]).a[[x]] := J(x:¬A[[u:=t]]).x(a[[x]]),
• qd(z:¬C).f ♦ [!u.λx:A[[u]].c[[u,x,z]]:C] :=

∨
∪(z:¬C).f ♦ [!u.λx:A[[u]].z(c[[u,x,z]])], [u /∈ FVu(C)].

In a Boolean setting, the “minimal” injections and the [∨,∃]m-selectors are special cases of the “Clavian”
injections and the [∨,∃]d-selectors, resp., viz.

(i) “minimal” vs “Clavian” injections:

• j1[[A,B]](a) ≡ j1(x:¬A,y:¬B).a [≡ j(x:¬A,y:¬B).x(a)], [x, y /∈ FVλ(a)],
• j2[[A,B]](b) ≡ j2(x:¬A,y:¬B).b [≡ j(x:¬A,y:¬B).y(b)], [x, y /∈ FVλ(b)],
• [t,a:A[[u:=t]]] ≡ Jm(a:A[[u:=t]]) ≡ Jd(x:¬A[[u:=t]]).a [≡ J(x:¬A[[u:=t]]).x(a)], [x /∈ FVλ(a)],

(ii) “minimal” vs “Clavian” (negative) selectors:

• t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) ≡ td(z:¬C).f ♦ [λx:A.c1[[x]]:C,λy:B.c2[[y]]:C],
[z /∈ FVλ(c1[[x]],c2[[y]])],

• q(f,[u:U][x:A[[u]]].c[[u,x]]:C) ≡ qd(z:¬C).f ♦ [!u.λx:A[[u]].c[[u,x]]:C],
[z /∈ FVλ(c[[u,x]]), u /∈ FVu(C)].

As expected, one can simulate the “Clavian” proof-operators too, in a Boolean setting (without [∨,∃]-
primitives, relative to the [⊥,→,∧,∀]-type-structure), via the general pattern above.

Definition (“Clavian” [∨,∃]-proof-operators: Boolean simulation)

(1) “Clavian” [∨]-proof-operators:

• j1(x:¬A,y:¬B).a[[x,y]] := λz:(¬A∧¬B).p1(z)(a[[x:=p1(z)]]), [z /∈ FVλ(a[[x,y]])],
• j2(x:¬A,y:¬B).b[[x,y]] := λz:(¬A∧¬B).p2(z)(b[[y:=p2(z)]]), [z /∈ FVλ(b[[x,y]])],
• td(z:¬C).f ♦ [λx:A.c1[[x,z]]:C,λy:B.c2[[y,z]]:C] := γz:¬C.(f)<λx:A.z(c1[[x,z]]):¬A,λy:B.z(c2[[y,z]]):¬B>,

(2) “Clavian” [∃]-proof-operators:
• Jd(x:¬A[[t]]).a[[x]] := λz:(∀u.¬A[[u]]).z[t](a[[x:=z[t]]]), [z /∈ FVλ(a)],
• qd(z:¬C).f ♦ [!u.λx:A[[u]]].c[[u,x,z]]:C) := γz:¬C.f(!u.λx:A[[u]].z(c[[u,x,z]])), [u /∈ FVu(C)].

The “Clavian” proof-operators so defined correspond to proof-operators of the logic of “complete refutability”
(here: DQ) of H. B. Curry [52,63], also known as a “logic of strict negation”.17In contrast with the “minimal”

17The appellation “Clavian” – frequent in professional logic jargon, although hardly documented in logic text-books –
alludes to Christoph Klau SJ [Lat . Clavius] (1537-1612), a Jesuit mathematician and astronomer, credited oft – erroneously – by
a hasty – first Jesuit, later common – tradition, with the “discovery” of the consequentia mirabilis [¬A → A →A]. Historically,



BEYOND BHK 23

[∨,∃]-notions, the “Clavian” notions are essentially non-Brouwerian (so, they are non-Boolean, rather than
non-classical). Indeed, they yield tertium non datur by mere (type-) instantiation, although their inferential
properties alone are not sufficient in order to express the most general form of, say, reductio ad absurdum
(and, in fact, not even the most general form of ex falso quodlibet).

Beyond Minimalkalkül 2 : the Heyting logic and ex falso quodlibet. As is well-known, the Boolean tautology
⊥ → A [ex falso quodlibet] is valid in the Heyting logic HQ and can be also used (e.g., in axiomatics) in
order to distinguish HQ from MQ (in fact, one has: HQ = MQ + [⊥ → A]). The following definitions
simulate the specific intuitionistic proof-operator(s) involved in ex falso quodlibet in Boolean terms, relative
to a [⊥,→,(∧,∨,∀,∃)]-type-structure,
Definition (Ex falso quodlibet and the ω[[A]]-family , ‖− A :: H).

For all formulas A in [⊥,→,(∧,∨,∀,∃)], set
• ωA(e:⊥) [≡ ω(e:⊥):A] := γx:¬A.e [≡ γ`([x:¬A].e:⊥)], where x /∈ FVλ(e),
• ω[[A]] := λx:⊥.ωA(x) [≡ λx:⊥.γy:¬A.x].

For any formula A in [⊥,→,(∧,∨,∀,∃)], we write also oft ωA(e) for ωA(e:⊥), if the context is clear. In the
above, ω[[A]] (for A in [⊥,→,(∧,∨,∀,∃)]) stands for a family of (genuine) Heyting proof-combinators.
So, the (Heyting) proof-operator ωA(e:⊥) [= γ`([x:¬A].e:⊥), where x /∈ FVλ(e)] takes the “positive contents”
of the Boolean negative (inferential) proof-operator γ`(x:¬A.e:⊥) in a sense very much similar to the way
the MQ [∨,∃]-proof-operators were seen to “take (only) positive contents” from the analogous Boolean [∨,∃]-
proof-operators. Here, indeed, the “negative” assumption (= local context-parameter) [z : ¬A] is never used,
since the proof-situation depicted formally by

γ`([x:¬A].e:⊥) : A, provided x /∈ FVλ(e)
means that the proof e (of⊥) does not actually “depend on” the assumption [z : ¬A] (although it may possibly
“depend on” global context-parameters, ignored in the above). In this case, the redundant (“negative”)
assumption can be safely taken care of by a different kind of rule (viz., by a proof-context rule, i.e., in the
present setting, by the “cut”-rule < $K >).

Remark (“Finitary”/local γ-abstractions in the Heyting logic). As suggested earlier, for every formula A
in [⊥,→,∧,∨,∀,∃] such that A is “decidable” intuitionistically, i.e., whenever ¬A ∨ A has an intuitionistic
proof f , one can simulate [in classical logic] an intuitionistically “correct” local γ-abstractor γf , depending
on f [in fact, on the Boolean image of f , as obtained via the definitional embedding implicit in the above].
A possible “definition” could be, for instance,

γfx:¬A.e[[x]] := t(f :¬A∨A,[x:¬A].ωA(e[[x]]):A,[y:A].y:A).

the implied attribution is at least amusing, since the only references [two] in Clavius’ rather verbose Opera mathematica [five
tomes, in folio] to what we now use to call the “Law of Clavius” are there mainly in order to fight ignorance, and say, essentially,
that sample uses of this “law” – mirabile argumentandi modus, indeed, to his mind – could have been already encountered in
the Euclidean Elements [etiam usus est Euclides (IX.12)], so that, implicitly, no one, among the recentiores – even as famous as
Gerolamo Cardano (1501-1576), by the time Clavius was writing –, could possibly claim he got it “first”. For the Pavian, this
figure of proof was not less than res admirabilior quae inventa sit ab urbe condito. . . , longe majus Chrysippaeo syllogismo. . .
(De proportionibus, [Basle 1570]; cf. [Cardano 1663] 4, 579), and he seemed very proud of having found it, on his own [after all,
this is true]. Better documented, the Jesuit noticed that he wasn’t the first one to have used it in the history of mathematics or
– pace Chrysippus – in the history of proving [for Stoic antecedents, see, e.g., Sextus Emp. Adv. math., VIII, 281-2, 466 sq.].
On the other hand, once we decide to pay attention to the incidence of the relevant theoretical detail in [the history of] logic,
the adjective “Saccherian”, for instance – alluding, this time properly, also to a Jesuit scholar (!) – becomes, in this context, a
better substitute. Since it is, anyway, too late to change the logician’s traditional onomastics, we leave things as they are – and
as they were some 400 years ago, inasfar Pater Clavius is concerned –, extending, however, the use of the epi-theoretic qualifier
“Clavian” such as to cover the full range of proof-phenomena – operations, relations, properties, etc. – induced by the presence
of genuinely “Clavian proof-patterns” Γ[x:¬A] ` a[[x]] : A.
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In a genuine Boolean setting, this is uninteresting, since the “intuitionistic” proof-terms ωA(e[[x:¬A]]) are just
special γ-abstractions [γy:¬A.e[[x]], with y not free in e[[x]], i.e., with x and y being distinct proof-variables
of type ¬A].
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Chapter III

Calculi of λγ-conversion

In this section, we introduce a typed λ-calculus λγ0CQ, based on the type-structure [⊥,→,∧,∀]. As expected,
this is an equational theory λγ0CQ = < `0[CQ], =(λγ0CQ) >, consisting of
• a stratification `0[CQ] for the proof-terms of CQ; (`0[CQ] defines the classical consequence relation

for [⊥,→,∧,∀]-languages or the concept of a classical proof relative to [⊥,→,∧,∀]), and
• a concept of proof-equality =(λγ0CQ), defined on the proof-terms generated by `0[CQ].

Type-theoretically, a stratification is a partial map from p-terms to formulas. Its graph can be viewed as
a set of proof-statements of the form Γ `0 a : A (read: “a proves A in the proof-context Γ”). `0[CQ]
is given by (stratification) rules: these consist of proof-context rules and (proper) type-assignment rules
(the so-called “derivation rules”, describing the structure of the Boolean proof-operators). For the sake
of simplicity, we consider that the proof-contexts are (assumption-) sets.18Without loss of generality, the
(p-term-) stratification `0[CQ] can be identified with a set of proof-terms (the “Boolean proof-terms”, i.e.,
the proof-terms that are “stratifiable” relative to `0[CQ]).
The equational postulates – in common parlance: “rules” – of the proof-calculus λγ0CQ have the general
form Γ ` a1 = a2 [: A], provided Γ ` a1, a2 : A. For convenience, we state the stratification conditions
explicitly. In particular, the proof-term equality of λγ0CQ turns out to be finitely axiomatizable, in the
schematic sense. Of course, the properties of `0[CQ] do not depend on =(λγ0CQ).
Subsequently, λγ0CQ is extended to a definitionally equivalent structure (equational theory) λγ&CQ =
< `&[CQ], =(λγ&CQ) >. The latter – based on [⊥,→,∧,∀], too – can be viewed as the “official” proof-
theory of first-order classical logic.19

Definition (`0[CQ] and λγ0CQ).
(1) First-order Boolean proof-term stratification.

(11) Proof-context rules, as above:
1.1.1 “structural”: < I >, < K >, < Ku >, and
1.1.2 “cuts”: < $ >, < $[u] > (possibly: < $K >, < $uK >).

(12) The Boolean “type-assignment”.
1.2.1 Inferential rules.

(→iλ) Γ[x:A] ` b[[x]] : B ⇒ Γ ` λx:A.b[[x]] : A → B,
(→e@`) Γ1 ` f : A → B, Γ2 ` a : A ⇒ Γ1Γ2 ` f(a) : B,
(→iγ)0 Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γx:¬A.e[[x]] : A, where A is a “prime” formula.

1.2.2 Algebraic rules.
(∧i) Γ1 ` a : A, Γ2 ` b : B ⇒ Γ1Γ2 ` <a:A,b:B> : A ∧ B,
(∧e@\

1) Γ ` f : A ∧ B ⇒ Γ ` p1(f:A∧B) : A,
(∧e@\

2) Γ ` f : A ∧ B ⇒ Γ ` p2(f:A∧B) : B.

18The graph of the partial map `0 : p-terms ↪→ formulas, =(`0) say, is thus supposed to be generated effectively from an
“atomic” type-assignment % : Λ-atoms −→ formulas. So, each point of =(`0) is a pair (a : A), where A ≡ A[[u1:U,. . . ,um:U]]
and a ≡ a[[u1:U,. . . ,um:U,x1:A1,. . . ,xn:An]], with parameters (i.e., U- and Λ-atoms), occurring free (in A, and a) only as
shown and where the parameter-stratification is determined by a finite segment of (the graph of) %, viz. by a proof-context Γ
≡ [u1:U]. . . [um:U] ^ [x1:A1]. . . [xn:An].

19Here, the technical concept of a proof-theory (λγ-theory) functions as an explanatum for an intuitive notion/practice.
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1.2.3 Generic [first-order ] rules.
(∀i) Γ[u:U] ` a[[u]] : A[[u]] ⇒ Γ ` !u.a[[u]] : ∀u.A[[u]],
(∀e@∪) Γ ` f : ∀u.A[[u]], Γu ‖− t :: U ⇒ ΓuΓ ` f[t] : A[[u:=t]], [u /∈ FVu(f)].

(2) First-order Boolean proof-equality [λγ0CQ-equality ].
2.1 Functional rules [= λπ!-equality ].

[β → λ] Γ ` (λx:A.b[[x]])(a) = b[[x:=a]] [: B], if Γ ` a : A, and Γ[x:A] ` b[[x]] : B,
[η → λ] Γ ` λx:A.f(x) = f [: A → B], if Γ ` f : A → B, [x /∈ FVλ(f)],
[β∧1] Γ ` p1(<a:A,b:B>) = a [: A], if Γ ` a : A, and Γ ` b : B,
[β∧2] Γ ` p2(<a:A,b:B>) = b [: B], if Γ ` a : A, and Γ ` b : B,
[η∧] Γ ` <p1(c:A∧B),p2(c:A∧B)> = c [: A ∧ B], if Γ ` c : A ∧ B,
[β∀] Γ ` (!u.a[[u]])[t] = a[[u:=t]] [: A[[u:=t]]], if Γ ‖− t :: U, and Γ[u:U] ` a[[u]] : A[[u]],
[η∀] Γ ` !u.f[u] = f [: ∀u.A[[u]]], if Γ ` f : ∀u.A[[u]], [u /∈ FVu(f)].

2.2 “Prime” reductio rules. If A is a “prime” formula,
[
∮

γ]0 Γ ` γx:¬A.f[[x]](x(γy:¬A.e[[x,y]])) = γz:¬A.f[[z]](e[[z,z]]) [: A],
if Γ[x:¬A] ` f[[x]] : >, Γ[x:¬A][y:¬A] ` e[[x,y]] : ⊥, where e[[z,z]] ≡ e[[x:=z]][[y:=z]],

[η → γ]0 Γ ` γx:¬A.x(f) = f [: A], if Γ ` f : A, [x /∈ FVλ(f)],
2.3 Congruence rules.

[ρ] Γ ` a = a [: A], if Γ ` a : A,
[σ] Γ ` a = b [: A], if Γ ` b = a : A,
[τ ] Γ ` a = c [: A], if Γ ` a = b : A, and Γ ` b = c : A,
[ξ → λ] Γ ` λx:A.b1[[x]] = λx:A.b2[[x]] [: A → B], if Γ[x:A] ` b1[[x]] = b2[[x]] : B,
[ξ → γ]0 Γ ` γx:¬A.e1[[x]] = γx:¬A.e2[[x]] [: A], if Γ[x:¬A] ` e1[[x]] = e2[[x]] : ⊥, for A “prime”,
[µ →] Γ ` f(a) = g(a) [: B], if Γ ` f = g : A → B, and Γ ` a : A,
[ν →] Γ ` f(a) = f(b) [: B], if Γ ` a = b : A, and Γ ` f : A → B,
[ξ∧] Γ ` <a1:A,b1:B> = <a2:A,b2:B> [: A ∧ B], if Γ ` a1 = a2: A, and Γ ` b1 = b2: B,
[ν∧1] Γ ` p1(f:A∧B) = p1(g:A∧B) [: A], if Γ ` f = g : A ∧ B,
[ν∧2] Γ ` p2(f:A∧B) = p2(g:A∧B) [: B], if Γ ` f = g : A ∧ B,
[ξ∀] Γ ` !u.a1[[u]] = !u.a2[[u]] [: ∀u.A[[u]]], if Γ[u:U] ` a1[[u]] = a2[[u]] : A[[u]],
[µ∀] Γ ` f[t] = g[t] [: A[[u:=t]]], if Γ ` f = g : ∀u.A[[u]], where Γ ‖− t :: U.

Note. According to the previous proof-context conventions, the assumption on contexts Γ[x:C] (resp. Γ[u:U])
is that [x:C] (resp. [u:U]) does not occur in Γ. Also, a “U-context” Γu contains only U-parameters, i.e., it
must be of the form [u1:U]. . . [um:U] (so, “Γu ‖− t :: U” means that the U-term t contains possibly free
U-variables that are among the U-parameters of Γu).
Of course, the congruence rules of λγ0CQ could have been stated, more economically, in terms of syntactic
proof-environments.

Remark (Folklore: λπ!). It is easy to see that the γ-free part of λγ0CQ is a proper – in fact, conservative
– extension, λπ! say, of the ordinary typed λ-calculus λτ . At a closer look, λπ! is, essentially, a “pure”
Automath system (without facilities for systematic abbreviations and module-writing, i.e., Aut-“books”),
viz. the “pure” part of Zucker’s [77] Aut-Π. It is also a proper part of the first-order fragment of Martin-Löf’s
[84] type theory. Proof-theoretically, λπ! is the same thing as the [⊥,→,∧,∀]-fragment of the [proof-theory
of] Minimalkalkül. In particular, λπ! is known to be Post-consistent . Indeed, where Cons(λ) means “λ
is Post consistent”, one has easily Cons(λτ ) ⇐⇒ Cons(λπ) ⇐⇒ Cons(λπ!), where λπ – the “typed
λ-calculus with surjective pairing” – is the quantifier-free fragment of λπ!. (A similar statement holds for
SN [= strong normalization] properties. This is well-known intuitionistic and/or Automath folklore; cf.,
e.g., [van Daalen 80], [Troelstra 86].)
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As an immediate consequence from definitions, we have a
Lemma (General reductio: stratification). The following stratification rule is derivable in λγ0CQ (actually,
in `0[CQ]), for all formulas A in [⊥,→,∧,∀]:

(→iγ) Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γx:¬A.e[[x]] : A.
Proof . By induction on the structure of A, using (→iγ)0 and the definition of γx:¬A.e[[x]], for A := ⊥,
(B→C), (B∧C), (∀u.B[[u]]). ¤
Notation (`&[CQ] and `[CQ]).

In what follows, the Boolean proof-term stratification based on [⊥,→,∧,∀], with primitive γ-forms
γx:¬A.e[[x]], for all formulas A in [⊥,→,∧,∀], and the rules of `0[CQ], with (→iγ)0 replaced by (→iγ), is
referred to by `&[CQ]. The fragment of `&[CQ], without ∧ and ∧-proof-primitives (defined for formulas
in [⊥,→,∀] alone), is referred to next by `[CQ].

“Type-checking” proof-terms: the sub-proof property and proof-categoricity for `0[CQ] and `&[CQ]. The
“type-checking” of a Boolean p-term, i.e., the verification of its “correctness” relative to `0[CQ], the stratifi-
cation of λγ0CQ, corresponds, in traditional terms, to “theorem proving”. The theoretical basis of proof-term
“type-checking” is in the fact that CQ is proof-categorical relative to the type-theoretic presentation `0[CQ].
Recall that “Γ ` c” is shorthand for “Γ ` c : C, for some C”. Where ` stands for derivability in `0[CQ], we
have the following
Lemma (Inversion Lemma for `0[CQ]).

(111) Γ ` λx:A.b[[x]] ⇒ Γ ` λx:A.b[[x]] : (A → B), for some B,
(112)0 Γ ` γx:C.e[[x]] ⇒ C ≡ ¬A, and Γ ` γx:¬A.e[[x]] : A, for some “prime” formula A,
(12) Γ ` <a:A,b:B> ⇒ Γ ` <a:A,b:B> : A ∧ B,
(13) Γ ` !u.a[[u]] ⇒ Γ ` !u.a[[u]] : ∀u.A[[u]], for some A[[u]], with, possibly, u ∈ FVu(A[[u]]),
(21) Γ ` f(a) ⇒ Γ ` f : A → B, Γ ` a : A, for some A, B, such that Γ ` f(a) : B,
(221) Γ ` p1(c:A∧B) ⇒ Γ ` p1(c:A∧B) : A,
(222) Γ ` p2(c:A∧B) ⇒ Γ ` p2(c:A∧B) : B,
(23) Γ ` f[t] ⇒ Γ ` f[t] : A[[u:=t]], for some A[[u]], and Γ ‖− t :: U,

where u ∈ FVu(A[[u]]), with t free for u in A[[u]].
Proof . By the stratification rules of `0[CQ]. ¤
For `&[CQ], we have, in general, a
Corollary (Inversion Lemma for `&[CQ]). The Inversion Lemma holds for `&[CQ], too, with, moreover,

(112) Γ `& γx:C.e[[x]] ⇒ C ≡ ¬A, for some A, and Γ `& γx:¬A.e[[x]] : A,
(A in [⊥,→,∧,∀]), in place of (112)0.
Proof . As above, using also (→iγ), i.e., the stratification rules of `&[CQ]. ¤
This yields a rigorous substitute for the traditional talk about a “subformula-property”. Indeed, where `
stands for “correctness” [derivability] in `0[CQ], we have a
Theorem (Sub-proof Correctness for `0[CQ]).

(111) Γ ` λx:A.a[[x]] : (A→B) ⇒ Γ[x:A] ` a[[x]] : B,
(112)0 Γ ` γx:¬A.e[[x]] : A ⇒ Γ[x:¬A] ` e[[x]] : ⊥, for any “prime” A,
(12) Γ ` <a:A,b:B> : (A∧B) ⇒ Γ ` a : A, and Γ ` b : B,
(13) Γ ` !u.a[[u]] : ∀u.A[[u]] ⇒ Γ[u:U] ` a[[u]] : A[[u]], u fresh for Γ,
(21) Γ ` f(c) : A ⇒ Γ ` f : C → A, and Γ ` c : C, for some C,
(221) Γ ` p1(c:A∧B) : A ⇒ Γ ` c : A ∧ B,
(222) Γ ` p2(c:A∧B) : B ⇒ Γ ` c : A ∧ B,
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(23) Γ ` f[t] : A[[u:=t]] ⇒ Γ ` f : ∀v.A[[u:=v]], and Γ ‖− t :: U,
t free for u in A[[u]],
v fresh for Γ, not free in A[[u:=t]], and f.

Proof . By the Inversion Lemma for `0[CQ]. ¤
Corollary (Sub-proof Correctness for `&[CQ]). The Sub-proof Correctness Theorem holds for `&[CQ],
with, also, for all formulas A in [⊥,→,∧,∀],

(112) Γ `& γx:¬A.e[[x]] : A ⇒ Γ[x:¬A] `& e[[x]] : ⊥,
in place of (112)0.
Proof . By the Inversion Lemmas above. ¤
Remark (Type-checking algorithms for CQ-proofs). The Sub-proof Correctness Theorems guarantee the
existence of a type-checking algorithm for first-order classical logic proof(-term)s. This does not depend on
considerations about proof-reduction and/or proof-equality in CQ.

Corollary (Global Sub-proof Correctness for `0[CQ]). Let a, b be proof-terms of `0[CQ] such that b is a
subterm of a. If Γ ` a then Γ’ ` b, for some proof-context Γ’.
Proof . By induction on the subterm structure of a, using the above. ¤
Theorem (Proof-categoricity relative to `0[CQ]: [UT-CQ]). If Γ ` a : A1 and Γ ` a : A2 then A1 ≡ A2.
Proof . By induction on the structure of a, using the Sub-proof Correctness Theorem for `0[CQ]. ¤
In is clear that the last two statements hold for `&[CQ] – and so `[CQ] –, too. In other words, classical logic
CQ is proof-categorical relative to the type-theoretic presentations/stratifications `0[CQ], `&[CQ], resp.

The λγ-calculus λγ&CQ. In the above, the rule [η → γ]0 is an extensionality rule for “prime” γ-abstractions,
whereas [

∮
γ]0 is a diagonalization rule for “prime” uses of γ [reductio ad absurdum] (cf., e.g., the “commut-

ing” behavior of the Heyting [∨,∃]-selectors). In λγ0CQ, these rules can be seen to hold for every use of γ,
as defined in the proof-term syntax, viz.
Lemma (General reductio: basic equational behavior). The following equations ([reductio diagonalization]
and [reductio extensionality ], resp.) are derivable in λγ0CQ, for all formulas A in [⊥,→,∧,∀]:

[
∮

γ] Γ ` γx:¬A.f[[x]](x(γy:¬A.e[[x,y]])) = γz:¬A.f[[z]](e[[z,z]]) [: A],
if Γ[x:¬A] ` f[[x]] : >, Γ[x:¬A][y:¬A] ` e[[x,y]] : ⊥, where e[[z,z]] ≡ e[[x:=z]][[y:=z]],

[η → γ] Γ ` γx:¬A.x(f) = f [: A], if Γ ` f : A, [x /∈ FVλ(f)].
Proof . In each case, by induction on the structure of A, using the “prime” rules [

∮
γ]0, [η → γ]0, as a basis

of the induction, and the definition of γx:¬A.e[[x]], for A := ⊥, (B→C), (B∧C), (∀u.B[[u]]). ¤
Remark (General γ-congruence). The following congruence rule is derivable in λγ0CQ, for all formulas A
in [⊥,→,∧,∀] [exercise]:

[ξ → γ] Γ ` γx:¬A.e1[[x]] = γx:¬A.e2[[x]] [: A], if Γ[x:¬A] ` e1[[x]] = e2[[x]] : ⊥.

Remark (The diagonalization rule). The diagonalization rule [
∮

γ] can be also stated in terms of syntactic
proof-environments, viz.

¿∮
γÀ Γ ` γx:¬A.ϕ¿ x(γy:¬A.c[[x,y]]) À = γz:¬A.ϕ¿ c[[x:=z]][[y:=z]] À [: A],

for any syntactic proof-environment ϕ¿ • À, with Γ[x:¬A] ` ϕ¿ x(γy:¬A.c[[x,y]]) À : ⊥. As a special case,
one has a weak diagonalization rule:

[
∮

0γ] Γ ` γx:¬A.x(γy:¬A.c[[x,y]]) = γz:¬A.c[[x:=z]][[y:=z]] [: A], if Γ[x:¬A][y:¬A] ` c[[x,y]] : ⊥,
(which is, indeed, weaker than [

∮
γ], for one cannot identify consistently, in λγ0CQ, any f such that Γ ` f : >

≡ (⊥ → ⊥) with Ω ≡ λx:⊥.x). In the general case ¿∮
γÀ, the stratification proviso
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Γ[x:¬A] ` ϕ¿ x(γy:¬A.c[[x,y]]) À, ϕ¿ c[[x:=z]][[y:=z]] À : ⊥,
for any syntactic proof-environment ϕ¿ • À, amounts to the fact that Γ(ϕ) ` c[[x,y]] : ⊥, for some proof-
context Γ(ϕ) extending Γ[x:¬A][y:¬A] and depending possibly on ϕ¿ • À.

Lemma (Boolean reductio lifting). The following equations are derivable in λγ0CQ, for all formulas A, B
in [⊥,→,∧,∀], and all p-terms e:

[hβγ →] Γ ` γx:¬(A→B).e[[x]] = λx0:A.γx1:¬B.e’[[x0,x1]] [: A → B],
if Γ[x:¬(A→B)] ` e[[x]] : ⊥, where e’[[x0,x1]] ≡ e[[x:=λz:(A→B).x1(z(x0))]],

[hβγ∧] Γ ` γx:¬(A∧B).e[[x]] = <a:A,b:B> [: A ∧ B], if Γ[x:¬(A∧B)] ` e[[x]] : ⊥, where
a ≡ γx1:¬A.e[[x:=λz:(A∧B).x1(p1(z:A∧B)]], and
b ≡ γx2:¬B.e[[x:=λz:(A∧B).x2(p2(z:A∧B)]],

[hβγ∀] Γ ` γx:¬(∀u.A[[u]]).e[[x]] = !u.γx1:¬A[[u]].e’[[u,x1]] [: ∀u.A[[u]]],
if Γ[x:¬(∀u.A[[u]])] ` e[[x]] : ⊥, where e’[[u,x1]] ≡ e[[x:=λz:(∀u.A[[u]]).x1(z[u])]].

Proof . From the definition of γx:¬A.e[[x]], for A := ⊥, (B→C), (B∧C), (∀u.B[[u]]), using (→iγ) in order to
insure the stratification conditions. ¤
Theorem (The Boolean normal reductio rules). The following equations are derivable in λγ0CQ, for all
formulas A, B in [⊥,→,∧,∀], all p-terms e, a, and all U-terms t:

[βγ⊥] Γ ` γx:>.e[[x]] = e[[x:=Ω]] [: ⊥], if Γ[x:>] ` e[[x]] : ⊥,
[βγ →] Γ ` (γx:¬(A→B).e[[x]])a = γx:¬B.e[[x:=λz:(A→B).x(z(a))]] [: B],

if Γ ` a : A, and Γ[x:¬(A→B)] ` e[[x]] : ⊥,
[βγ∧1] Γ ` p1((γx:¬(A∧B).e[[x]]):(A∧B)) = γx1:¬A.e1[[x1]] [: A],

if Γ[x:¬(A∧B)] ` e[[x]] : ⊥, where e1[[x1]] ≡ e[[x:=λz:(A∧B).x1(p1(z))]],
[βγ∧2] Γ ` p2((γx:¬(A∧B).e[[x]]):(A∧B)) = γx2:¬B.e2[[x2]] [: B],

if Γ[x:¬(A∧B)] ` e[[x]] : ⊥, where e2[[x2]] ≡ e[[x:=λz:(A∧B).x2(p2(z))]],
[βγ∀] Γ ` (γx:¬(∀u.A[[u]]).e[[x]])[t] = γx:¬A[[u:=t]].e’[[x]] [: A[[u:=t]]],

if Γ ‖− t :: U, and Γ[x:¬(∀u.A[[u]])] ` e[[x]] : ⊥, where e’[[x]] ≡ e[[x:=λz:(∀u.A[[u]]).x(z[t])]].
Proof . From the h-rules above, using the β-rules of λγ0CQ. ¤
Remark (The λγ(&)CQ- and hλγ(&)CQ-calculi/theories). So, a (stratification/equationally) equivalent
formulation of λγ0CQ could be the theory λγ&CQ, using the full γ-syntax, based on `&[CQ] [with a
primitive stratification rule (→iγ) in place of the “prime” rule (→iγ)0 and] with, as γ-postulates:

• the normal βγ-rules: [βγ⊥], [βγ →], [βγ∧1], [βγ∧2], [βγ∀],
• the diagonalization rule [

∮
γ],

• the extensionality rule [η → γ], and
• the general γ-congruence [ξ → γ], above.

In view of the η-rules of λγ&CQ, one can reformulate equivalently the latter one, in the same syntax, as
a theory hλγ&CQ, with h-rules ([hβγ⊥], [hβγ →], [hβγ∧], [hβγ∀]) as postulates, in place of the normal
βγ-rules of λγ&CQ. The sub-theories of λγ&CQ, hλγ&CQ, resp. defined on `[CQ], without ∧-types and
∧-proof-primitives, are referred to next by λγCQ and hλγCQ, resp.

In particular, [hβγ →] yields the kernel of the Glivenko [28,29] “negative” translation, as extended to the
proofs themselves:
Corollary (The Glivenko “negative” proof-translation).

[hβγ¬] Γ ` γx:(¬¬A).e[[x]] = λx0:A.e[[x:=λz:(¬A).z(x0)]] [: ¬A], if Γ[x:(¬¬A)] ` e[[x]] : ⊥.
Proof . From [hβγ →] and [βγ⊥]. ¤
This suggests a straightforward way of showing Post-consistency for the classical proof-calculus λγ0CQ,
[i.e., Cons(λγ0CQ), whence Cons(λγ&CQ), by equational equivalence, and so Cons(λγCQ)].
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With ` used ambiguously for derivability in λγ0CQ and/or λπ!, we have the following
Definition (The Glivenko “negative” translation).

Define a map (. . . )N from proof-statements Γ ` a : A of λγ0CQ to proof-statements (Γ)N ` (a)N : (A)N

of λπ! by:
• (t)N ≡ t, for any U-term t,
• (A)N ≡ A[[P1:=¬P1]]. . . [[Pn:=¬Pn]], for any H-atom Pi (1 ≤ i ≤ n), occurring in A,
• (Γ)N ≡ Γu ^ [x1:(A1)N ]. . . [xn:(An)N ], for any proof-context Γ := Γu ^ [x1:A1]. . . [xn:An]
• (a)N , by induction on the structure of a (in `0[CQ]),

• (x)N ≡ x,
• (λx:A.a[[x]])N ≡ λx:(A)N .(a[[x]])N ,
• (fa)N ≡ (f)N (a)N ,
• (γx:¬A.e[[x]])N ≡ λx0:A.(e[[x]])N [[x:=λz:¬A.z(x0)]], for “prime” formulas A,
• (< a:A, b:B >)N ≡ < (a)N :(A)N , (b)N :(A)N >,
• (p1(f:A∧B))N ≡ p1((f)N :(A∧B)N ),
• (p2(f:A∧B))N ≡ p2((f)N :(A∧B)N ),
• (!u.a[[u]])N ≡ !u.(a[[u]])N ,
• (f[t])N ≡ (f)N ([t])N .

One checks easily the fact that (. . . )N is well-defined as a map [exercise]. From this, we get the expected
“Glivenko Lemmas”, by applying (. . . )N to (CQ-) proof-statements and proof-equations, resp.:
Lemma (V. I. Glivenko, 1928). Γ ` a : A in λγ0CQ ⇒ (Γ)N ` (a)N : (A)N in λπ!.
Proof . By induction on `0[CQ]. ¤
Lemma (λπ! ⊇ (λγ0CQ)N ). Γ ` a1 = a2 in λγ0CQ ⇒ (Γ)N ` (a1)N = (a2)N in λπ!.
Proof . Immediate, for the (. . . )N -images of the “prime” rules [

∮
γ]0, [η → γ]0, [ξ → γ]0 hold in λπ!. ¤

In other words, λπ! extends λγ0CQ, modulo the Glivenko “negative” translation (. . . )N . In fact, if
Γ ` a1 = a2 : A holds in λγ0CQ then (Γ)N ` (a1)N = (a2)N : (A)N holds in λπ!.
Theorem (Cons(λγ0CQ)). λγ0CQ is Post-consistent.
Proof . The above gives Cons(λπ!) ⇒ Cons(λγ0CQ) and we know that Cons(λπ!). [Actually, Cons(λτ )
⇐⇒ Cons(λπ!) and Cons(λτ ).] ¤
Corollary (Cons(λγ(&)CQ)). λγ(&)CQ is Post-consistent.
Proof . λγ0CQ and λγ&CQ are equationally equivalent and Cons(λγ0CQ), while λγCQ is a sub-theory of
λγ&CQ. ¤
In other words: the first-order classical logic is proof-consistent .
There is also a type-free variant of the consistency-proof for λγ(&)CQ [Rezuş 90]. On the other hand,
the “Glivenko” argument above can be easily transformed into a standard model-construction for λγ&CQ
[exercise]. (Hint . See, mutatis mutandis, [Rezuş 91].)
Conjecture (Post-completeness for λγ(0,&)CQ). λγ(0,&)CQ is Post-complete.

That is to say, essentially: if CQ ‖− A [i.e., if A is provable in CQ] then the addition of any non-
derivable closed proof-equation a1 = a2 (where [ ] ` a1, a2 : A) to λγ(0,&)CQ – in the corresponding
proof-language – would also make the resulting extension Post-inconsistent; viz., any two proofs of A
should be equal, in the extended sense, whence “proof-irrelevance”. The property referred to is, in
fact, a “typed” analogue of the well-known Böhm [68] saturation property for the extensional type-free
λ-calculus λβηK, where one cannot identify consistently any two normal combinators (in the “typed”
case, the normali[zabili]ty condition is implied by stratifiability).
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Chapter IV

The proof-theory of Johansson’s Minimalkalkül

Alternative Boolean proof-term stratifications. In order to be able to isolate proof-theoretically interesting
fragments of CQ, one needs some further details on the alternative Boolean proof-term stratifications.

Remark (The general positive selectors). If the general positive selectors
∧
`,

∧
\,

∧
∪ are defined as above,

in terms of “applications” @`, left/right “projections” @\
1, @\

2 and “instantiations” @∪, then we have the
following derived rules:
(→e) ΓΓ1Γ2 `

∧
`(y:B).c[[y]] ♦ f(a) : C, if Γ[y:B] ` c[[y]] : C, Γ1 ` f : A → B, Γ2 ` a : A,

(∧e) ΓΓ1 `
∧

\(x:A,y:B).c[[x,y]] ♦ f : C, if Γ[x:A][y:B] ` c[[x,y]] : C, Γ1 ` f : A ∧ B,
(∀e) ΓuΓΓ1 `

∧
∪(x:A[[t]]).c[[x]] ♦ f[t] : C, if ΓuΓ[x:A[[t]]] ` c[[x]] : C, [Γu ‖− t :: U], Γ1 ` f : ∀u.A[[u]].

Conversely, with proof-primitives
∧
`,

∧
\, and

∧
∪ subjected to stratification rules (→e), (∧e), and (∀e) resp.,

one can define the standard “application forms” f(a), p1(f:A∧B), p2(f:A∧B) and f[t] as above, whereupon
the rules (→e@`), (∧e@\

1), (∧e@\
2), and (∀i@∪) can be derived easily, using < I >.

Remark (The negative Boolean [∨,∃]-proof-operators). With ∨, ∃ and the associated negative proof-
operators j,

∨
\ and J,

∨
∪, resp. defined as above, the following rules are derivable:

(∨i) Γ ` j(x:¬A,y:¬B).e[[x,y]] : A ∨ B, if Γ[x:¬A][y:¬B] ` e[[x,y]] : ⊥,
(∨e) ΓΓ1Γ2 `

∨
\(z:¬C).f ♦ [λx:A.e1[[x,z]], λy:B.e2[[y,z]]] : C,

if Γ ` f : A ∨ B, Γ1[x:A][z:¬C] ` e1[[x,z]] : ⊥, Γ2[y:B][z:¬C] ` e2[[y,z]] : ⊥,
(∃i) ΓuΓ ` J(x:¬A[[t]]).e[[x]] : ∃u.A[[u]], if ΓuΓ[x:¬A[[t]]] ` e[[x]] : ⊥, [Γu ‖− t :: U],
(∃e) ΓΓ1 `

∨
∪(z:¬C).f ♦ [!u.λx:A[[u]].e[[u,x,z]]] : C,

if Γ ` f : ∃u.A[[u]], Γ1[u:U][x:A[[u]]][z:¬C] ` e[[u,x,z]] : ⊥, [u /∈ FVu(C)].

Remark (L-style “left-introductions”: CQ-“Gentzenization”).
(1) Using the “initialization” rule < I >, the “e-rules” (→e), (∧e), (∨e), (∀e) and (∃e) above can be also
instantiated resp. to corresponding rules of “introduction on the left”, as in so-called “sequent” (L-style)
proof-systems:
(→`) Γ[f:(A→B)]Γ1 `

∧
`(y:B).c[[y]] ♦ f(a) : C, if Γ[y:B] ` c[[y]] : C, Γ1 ` a : A,

(∧ `) Γ[f:(A∧B)] ` ∧
\(x:A,y:B).c[[x,y]] ♦ f : C, if Γ[x:A][y:B] ` c[[x,y]] : C,

(∨ `) Γ1Γ2[f:(A∨B)] ` ∨
\(z:¬C).f ♦ [λx:A.e1, λy:B.e2] : C,

if Γ1[x:A][z:¬C] ` e1[[x,z]] : ⊥, Γ2[y:B][z:¬C] ` e2[[y,z]] : ⊥
(∀ `) ΓuΓ[f:(∀u.A[[u]])] ` ∧

∪(x:A[[t]]).c[[x]] ♦ f[t] : C, if ΓuΓ[x:A[[t]]] ` c[[x]] : C, [Γu ‖− t :: U],
(∃ `) Γ[f:(∃u.A[[u]])] ` ∨

∪(z:¬C).f ♦ [!u.λx:A[[u]].e] : C,
if Γ[u:U][x:A[[u]]][z:¬C] ` e[[u,x,z]] : ⊥, [u /∈ FVu(C)],

where the p-variable f is fresh for (Γu)Γ, ΓΓ1, Γ1Γ2 resp. Clearly, given the appropriate “cut”-rule(s), the
(. . .`)-rules are equivalent to the “e-rules” displayed earlier.
(2) The previous “i-rules”, (→iγ) excepted, match analogous rules of “introduction on the right” in “sequent”
proof-systems. In other words, the above should also yield a rigorous (sc., non-elliptic) L-like system for
CQ, with only “sequents” that are “singular on the right”, as in the case of the familiar L-systems for MQ
and/or HQ. Here, this is just a notational accident and we don’t have any interesting (theoretical) use for
it. In particular, the attempt to show that the “cuts” < $ > and < $[u] > are admissible for an L-style
CQ-stratification that does not have them as primitives is by the way, in the present setting. [The proper
theoretical matters to be discussed at this point fall under the rubric proof-reduction, which is outside the
scope of this work.]



32

Remarks (Alternative Boolean proof-term stratifications).

(1) The extended proof-term stratification `∗[CQ] is supposed to be defined by:

• proof-context rules:
• “structural”: < I >, < K >, < Ku >,
• “cuts”: < $ >, < $[u] >, (possibly: < $K >, < $uK >),

• “type-assignment” rules:
• inferential : (→iλ), (→iγ), (→e@`),
• algebraic: (∧i), (∧e@\

1), (∧e@\
2), and (∨i), (∨e),

• generic [first-order ]: (∀i), (∀e@∪), and (∃i), (∃e).
If the proof-contexts are thought of as sequences, one could take as primitive proof-context rules

• the “structural” rules:
• < I >, < K >, < KW >, < W >, < C >,
• < Ku >, < KWu >, < Wu >, < Cu >, and

• the “cuts”:
• < $K >, < $W >, < $ >,
• < $uK >, < $uW >, < $[u] >.

As mentioned earlier, this set is slightly redundant for the purposes of CQ.

(2) The standard stratifications `&[CQ] and `[CQ]. So `&[CQ] is the restriction of `∗[CQ] to a [⊥,→,∧,∀]
type-structure, i.e., to a proof-language without [∨,∃]-proof-primitives [missing rules: (∨i), (∨e), and (∃i),
(∃e)]. Also, `[CQ] is the restriction of `&[CQ] to [⊥,→,∀] (no algebraic proof-primitives). The stratification
`[CQ] makes up a minimal syntactic setting for a CQ-proof-theory (in the technical sense of this paper).

(3) The proof-term-structures `∗[CQ], and `&[CQ] are stratification-equivalent . Specifically, if the Boolean
[∨,∃]-operators j, J, and

∨
\,

∨
∪ are defined as above, let [a]∗ be the definitional expansion of a in `∗[CQ]

(relative to these definitions), for all proof-terms a in `∗[CQ]. Then, where `∗ and `& resp. have the
expected meaning, we have

Γ `& [a]∗ : A ⇐⇒ Γ `∗ a : A, for all p-terms a of `∗[CQ].

Indeed, since [a]∗ ≡ a for the proof-terms of `&[CQ], the ⇒-part of the statement is immediate. The
converse presupposes the fact that we are able to derive the algebraic rules (∨i), (∨e), and the first-order
rules (∃i) and (∃e) within `&[CQ], using the previous definitions of the Boolean [∨,∃]-proof-operators j, J,∨

\,
∨
∪. This is straightforward. So, for classical logic purposes, there is no loss of generality if we restrict

the considerations to the proof-terms of `&[CQ], based on [⊥,→,∧,∀].
(4) Intensional proof-theories for CQ. One can show that `&[CQ] and `[CQ] are stratification-equivalent,
too, although the latter fact has no direct equational counterpart (reason: as already mentioned above,
the proof-theories based on `&[CQ] have also “∧-extensionality” [∧η] [i.e., “surjectivity of pairing”] as a
postulate, and the latter cannot be simulated in inferential terms). So, the λγ-calculi based on `[CQ] alone
are “intensional” in the sense that one cannot associate extensional proof-operations to conjunctions (and/or
disjunctions) that are available definitionally in terms of a [⊥,→,(∀)]-type-structure. [In fact, any definition
ϕ[A,B] of (A ∧ B) or (A ∨ B) in terms of [⊥,→,(∀)], such that A, B occur in “negative” sub-formulas in
ϕ[A,B] would admit of “intensional” proof-operators that are satisfying the appropriate β-rules, but fail to
satisfy analogous η-conditions. These derived operators are, in general, distinct from each other .]

Provability-completeness for `∗[CQ], `&[CQ], etc. It is easy to establish the fact that CQ ‖− A ⇐⇒
[ ] `∗ a : A, for some Boolean proof-combinator a of `∗[CQ] (where “CQ ‖− A” reads “A is provable in
CQ”). Analogous statements hold for `&[CQ] and `[CQ]. This must be intuitively clear by comparing the
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`∗[CQ]-rules above with the rules of an appropriate N -formulation for CQ (e.g., [Prawitz 65].) In view of
the above, it is enough to show this for `[CQ].20

The Minimalkalkül as a typed λ-calculus. We can examine now the sub-structure, `[MQ] say, of `∗[CQ]
corresponding to Johansson’s Minimalkalkül MQ. Recall that, on a (syntactic) proof-term level, the “posi-
tive”/“minimal” instances of the “negative” sumptors (the “Boolean injections”) j, J were given by proof-
operators ji, [i := 1,2], and Jm, while the “positive”/“minimal” contents of the Boolean negative [∨,∃]-
selectors

∨
\,

∨
∪ were recorded by the “minimal selectors” t, q, resp.

Explicitly, with Boolean ∨-proof-primitives, one has, in `∗[CQ] (w.r.t. the [⊥,→,∧,∨,∀,∃] type-structure),
the following analogues of the Minimalkalkül-stratification (“type-assignment”) rules for the “positive” [“min-
imal”] (and thus intuitionistic) disjunction ∨m.
Lemma (Johansson-Heyting ∨-rules: Minimalkalkül ∨-stratification).

(∨i1)m Γ ` j1[[A,B]](a:A) : A ∨ B, if Γ ` a : A,
(∨i2)m Γ ` j2[[A,B]](b:B) : A ∨ B, if Γ ` b : B,
(∨e)m ΓΓ1Γ2 ` t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C) : C,

if Γ ` f : A ∨ B, Γ1[x:A] ` c1[[x]] : C, Γ2[y:B] ` c2[[y]] : C.
Proof . In `∗[C(Q)], i.e., w.r.t. [⊥,→,∧,∨,(∀,∃)], one needs, for (∨ii)m, [i := 1,2]: <K>, and (∨i), whereas,
for (∨e)m: < I >, (→e@`), and (∨e) suffice. ¤
Similarly, one obtains in `∗[CQ], with Boolean ∃-proof-primitives, the following analogues of the Hey-
ting/Johansson stratification proof-rules for the “minimal”/“positive” (and thus intuitionistic) existential
quantifier ∃m.
Lemma (Johansson-Heyting ∃-rules: Minimalkalkül ∃-stratification).

(∃i)m ΓuΓ ` [t,a:A[[t]]] [ ≡ Jm(a:A[[t]]) ] : ∃u.A[[u]], if ΓuΓ ` a : A[[t]], [Γu ‖− t :: U],
(∃e)m ΓΓ1 ` q(f,[u:U][x:A[[u]]].c[[u,x]]:C) : C, if Γ ` f : ∃u.A[[u]], Γ1[u:U][x:A[[u]]] ` c[[u,x]] : C,

[u /∈ FVu(C)].
Proof . In `∗[CQ] (i.e., w.r.t. [⊥,→,∧,∨,∀,∃]), one needs, for (∃i)m: < I >, (→e@`), (∃i), and, for (∃e)m:
< I >, (→e@`), (∃e). ¤
The following “positive” β-type [∨,∃]-rules are derivable in λγ&CQ.
Lemma (Minimalkalkül β-[∨,∃]m-proof-behavior in λγ&CQ).

(1) Functional rules.
(11) β-∨m-rules:
[β∨1]m Γ ` t(j1[[A,B]](a),[x:A].c1[[x]],[y:B].c2[[y]]) = c1[[x:=a]] : C,

if Γ ` a : A, Γ[x:A] ` c1[[x]] : C, Γ[y:B] ` c2[[y]] : C,
[β∨2]m Γ ` t(j2[[A,B]](b),[x:A].c1[[x]],[y:B].c2[[y]]) = c2[[y:=b]] : C,

if Γ ` b : B, Γ[x:A] ` c1[[x]] : C, Γ[y:B] ` c2[[y]] : C,

(12) β-∃m-rule:
[β∃]m Γ ` q([t,a:A[[t]]],[u:U][x:A[[u]]].c[[u,x]]) = c[[u:=t]][[x:=a]] : C,

if Γ ‖− t :: U, Γ ` a : A[[u:=t]], Γ[u : U][x : A[[u]]] ` c[[u,x]] : C, [u /∈ FVu(C)].

(2) Congruence rules for ∨m and ∃m.

20If the “purity of methods” is at premium, one could look up [Rezuş 90], for a technical alternative: it consists of using
a combinatory stratification equivalent of `[CQ], as an intermediate step. Thereby the problem is reduced to a matter of
evidence, too, the issue being in the fact that one should rather trust the axiomatics, i.e., a [finite] set of witness-patterns. A
clean – although not very deep – way of obtaining this type of – otherwise obvious – result would be, likely, by constructing a
model for classical provability, just from Boolean combinators [exercise].
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[ξ∨i]m Γ ` ji[[A1,A2]](a1:Ai) = ji[[A1,A2]](a2:Ai) : A1 ∨ A2, if Γ ` a1 = a2 : Ai, [i := 1,2],
[µ∨]m Γ ` t(f1,[x:A].a1[[x]],[y:B].b1[[y]]) = t(f2,[x:A].a2[[x]],[y:B].b2[[y]]) : C,

if Γ[x:A] ` a1[[x]] = a2[[x]] : C, Γ ` f1 = f2 : A ∨ B, Γ[y:B] ` b1[[y]] = b2[[y]] : C,
[ξ∃]m Γ ` [ t, a1:A[[t]] ] = [ t, a2:A[[t]] ] : ∃u.A[[u]], if Γ ` a1 = a2 : A[[u:=t]], [Γ ‖− t :: U],
[µ∃]m Γ ` q(f1,[u:U][x:A[[u]]].c1[[u,x]]) = q(f2,[u:U][x:A[[u]]].c2[[u,x]]) : C,

if Γ ` f1 = f2: ∃u.A[[u]], Γ[u : U][x : A[[u]]] ` c1[[u,x]] = c2[[u,x]] : C, [u /∈ FVu(C)].
Proof . Straightforward calculations. The explicit derivations in λγ&CQ are informative, however [exercise].
We list only the required derivability conditions (ignoring congruence rules). For [β∨1]m: [β → λ], [β∧1],
and [η → γ]. For [β∨2]m: Analogously. For [β∃]m: [β → λ], [β∀], and [η → γ]. For [ξ∨1]m, [ξ∨2]m, [µ∨]m,
[ξ∃]m, [µ∃]m: use the primitive λγ&CQ-congruence rules. ¤
The “extensionality” [∨,∃]-rules of λγ&CQ are already “minimal”, viz., using the (simulated) MQ-notation,
one has, in λγ&CQ:
Lemma (Boolean [∨,∃]m-“extensionality” in Minimalkalkül notation).

[η∨]m Γ ` t(f,[x:A].j1[[A,B]](x),[y:B].j2[[A,B]](y)) = f, if Γ ` f : A ∨ B, [x, y /∈ FVλ(f)],
[η∃]m Γ ` q(f,[u:U][x:A[[u]]].[u,x:A[[u]]]) = f, if Γ ` f : ∃u.A[[u]], [x /∈ FVλ(f), u /∈ FVu(f)].

Proof . Straightforward [exercise]. The explicit derivability conditions in λγ&CQ are, for [η∨]m: [β → λ],
[η → λ], [η∧], [βγ⊥], and [hβγ →] and, for [η∃]m: [β → λ], [η → λ], [η∀], [βγ⊥], and [hβγ →]. ¤
Remark (λγ&CQ-derivability conditions for the Minimalkalkül). Inspecting the explicit derivations above
shows that neither [

∮
γ] nor the “[∧,∀]-extensionality” properties of λγ&CQ were needed in the derivation

of the “positive” β-rules and in the [∨,∃]m-congruence rules. So the “positive” β-rules [β∨1]m, [β∨2]m,
[β∃]m resp., as well as the congruence rules [ξ∨1]m, [ξ∨2]m, [µ∨]m and [ξ∃]m, [µ∃]m resp. are derivable
in the diagonalization-free subsystem of λγ&CQ. [For the record, however, “γ-extensionality” [η → γ] is
apparently unavoidable in the derivation of the “positive” β-[∨,∃]m-rules.] On the other hand, from the
explicit derivation of [η∨]m, it is clear that diagonalization [

∮
γ] is not needed in order to get [η∨]m in

λγ&CQ either, although [η∧] is required. Thus [η∨]m (“∨-extensionality”) obtains in a proper subsystem
of λγ&CQ without diagonalization, but with “∧-extensionality” (“surjectivity of pairing”). Actually, the
property [η∨]m is rarely, if ever, mentioned in the literature on MQ and the Heyting logic. Finally, inspecting
the explicit derivation of [η∃]m shows that the “∃-extensionality” property obtains already in a subsystem
of λγ&CQ without diagonalization, although one needs [η∀] (“∀-extensionality”). As suggested above, the
“positive extensionalities” [η∨]m and [η∃]m are - very likely - the most general [∨,∃]-extensionality conditions
derivable in λγ&CQ.

One can now isolate the proof-theory of the Minimalkalkül as a typed λ-calculus λMQ. This is a proper
extension of λπ!, too.
We define the proof-syntax of MQ and the stratification `[MQ] of MQ-proof-terms (w.r.t. the full
[⊥,→,∧,∨,∀,∃] type-structure), as a fragment of `∗[CQ], modulo the obvious definitional embedding into
`&[CQ]. In order to do this, one can use the γ-free syntax of `∗[CQ] with the CQ-primitives j, J, and∨

\,
∨
∪, resp. replaced by appropriate “minimal” primitives j1, j2, Jm and t, q, resp. (with primitive

proof-forms matching those defined above), subjected to the “minimal” stratification rules (∨i1)m, (∨i2)m,
(∨e)m, (∃i)m, (∃e)m, resp. in place of the `∗[CQ]-rules (∨i), (∨e), (∃i), and (∃e), resp. (the remaining
items being as in `∗[CQ]).
The equational theory λMQ – the proof-theory of the Minimalkalkül – is obtained in the same way, using,
in the case of the “minimal” [∨,∃]-postulates, primitive analogues of the “positive” βη-conditions, shown to
be λγ&CQ-derivable in the above.
For further reference, the Minimalkalkül proof-syntax – relative to [⊥,→,∧,∨,∀,∃]-types –, the proof-rules for
the stratification `[MQ], and the equational theory λMQ are given by the following
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Definition (The Minimalkalkül as a typed λ-calculus: λMQ).
(1) Minimalkalkül proof-operators:

• inferential operators:
• sumptors: λ`(. . . ),
• selectors: @`(. . . ,. . . ) [derived:

∧
`(. . . ,. . . ,. . . )],

• algebraic operators (i := 1,2):
• sumptors: λ\(. . . ,. . . ), ji(. . . ),
• selectors: @\

i(. . . ), [derived:
∧

\(. . . )], t(. . . ,. . . ,. . . ),
• generic operators:

• sumptors: λ∪(. . . ), Jm(. . . )
• selectors: @∪(. . . ,. . . ), [derived:

∧
∪(. . . )], q(. . . ,. . . ).

(2) Minimalkalkül proof-terms [primitive forms]:
• inferential :

λx:A.b[[x]] [≡ λ`([x:A].b[[x]]:B)],
f(a) [≡ @`(f:A→B,a:A)],

• algebraic:
<a:A,b:B> [≡ λ\(a:A,b:B)],
p1(c:A∧B) [≡ @\

1(c:A∧B)],
p2(c:A∧B) [≡ @\

2(c:A∧B)],
j1[[A,B]](a:A) [≡ j1(a:A,[[B]])],
j2[[A,B]](b:B) [≡ j2([[A]],b:B)],
t(f,[x:A].c1[[x]]:C,[y:B].c2[[y]]:C),

• generic [first-order ]:
!u.a[[u]] [≡ λ∪([u:U]a:A[[u]])],
f[t] [≡ @∪(f:∀u.A[[u]],t:U)],
[t,a:A[[u:=t]]] [≡ Jm(x:A[[u:=t]])],
q(f,[u:U][x:A[[u]]].c[[u,x]]:C), [u /∈ FVu(C)].

(3) Minimalkalkül proof-rules (the `[MQ]-stratification):
• proof-context rules (as for `(&,?)[CQ]):

•“structural”: < I >, < K >, < Ku >,
•“cuts”: < $ >, < $[u] > (possibly: < $K >, < $uK >),

• “type-assignment” rules:
• inferential : (→iλ), (→e@`),
• algebraic: (∧i), (∧e@\

1), (∧e@\
2), (∨i1)m, (∨i2)m, (∨e)m,

• generic [first-order ]: (∀i), (∀i@∪), (∃i)m, (∃e)m.
(4) λMQ is an equational theory – a typed λ-theory – defined on `[MQ] by the following equational

postulates [proper “rules” and congruence conditions]:
• [β → λ], [η → λ], as in λγ&CQ,
• [β∧i], [η∧], (i := 1,2), as in λγ&CQ,
• [β∨i]m, [η∨]m, (i := 1,2), specific,
• [β∀], [η∀], as in λγ&CQ,
• [β∃]m, [η∃]m, specific,
• [ξ → λ], [µ →], [ν →], as in λγ&CQ,
• [ξ∧], [ν∧i], (i := 1,2), as in λγ&CQ,
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• [ξ∨i]m, [µ∨]m, (i := 1,2), specific,
• [ξ∀], [µ∀], as in λγ&CQ,
• [ξ∃]m, [µ∃]m, specific,
where the [∨,∃]m-rules are, mutatis mutandis, as above.

Alternatively, in place of the primitive “application forms” @`, @\
1, @\

2 and @∪, one could have taken as
primitives the general Boolean positive selectors. These are definable in Minimalkalkül, exactly as in the
Boolean case.

Remark (λMQ, the Heyting calculus and Martin-Löf ’s type theory).
(1) `[MQ] is a proper fragment of the Heyting proof-syntax and the Heyting proof-term stratification `[HQ],
discussed below, (i.e., the MQ-operators j1, j2, Jm, t and q are also proof-operators of the Heyting first-
order proof-calculus). Indeed, the [∨,∃]m-rules above are better-known as HQ-rules. Notably, `[HQ] has
more proof-forms (essentially, the ω-terms); these require, of course, additional stratification rules.
(2) Less emphasized in current discussions of “constructivism” is the fact that the so-called “Heyting proof-
calculus” λHQ is a typed λ-calculus (= an equational theory) extending properly λMQ, even in the `[MQ]-
syntax , viz. there are proof-equations of λHQ (as, e.g., the “commuting conversions”) that are not derivable
in λMQ, but can be already written down with the “purely positive” expressive means of `[MQ]. In other
words, λMQ is a proper fragment of the ω-free part of the (full) Heyting (first-order) proof-calculus.
(3) In particular, λMQ (as an equational theory) is, essentially, the same thing as the first-order fragment
of Martin-Löf’s [84] constructive type theory CTT. [The current type-theoretic literature is rather loose
about the proof-theoretic import of Martin-Löf’s type theory.] Of course, since the “empty type” ⊥ (Martin-
Löf’s N0), and an analogue of our ω are also present in the primitive syntax of CTT, one has additional
congruence ω-conditions in (the first-order) CTT, with no further effect , however. Like in λMQ, none
of the Heyting “⊥-rules” (here: ω-rules) are derivable in this fragment of CTT, let alone the “Heyting
commuting conversions” of λHQ. The additional proof-theoretic (logical) strength of Martin-Löf’s system(s)
is obtained by generalizing the quantifier rules “at a higher-order level”, using an ad hoc hierarchy of
universes, subjected to appropriate closure conditions. But this does not help us retrieve even the bare
“0-order” (propositional) fragment of the full Heyting proof-calculus. In fact, this situation is as [originally]
intended , since Martin-Löf’s type theory has been meant to provide a formal counterpart for Bishop’s
constructive mathematics (BCM). Reputedly, the latter can be also viewed as a formidable tour de force
in the attempt of reconstructing the bulk of current mathematics in “pure positive terms”. Brouwer’s
intuitionism (BI) is less restrictive as regards the use of the so-called “negative properties”. This is also
reflected in the fact that the [proof-theory of the] Heyting logic is significantly more complex than that [of
the logic] presupposed by BCM.

From the above, we retain the fact that λγ&CQ contains equationally the proof-theory of Minimalkalkül
(λMQ), as a proper extension, modulo an appropriate definitional embedding [. . . ]& : λMQ −→ λγ&CQ,
say. [The extension is proper , since λMQ is a γ-free system.]
For the record, we collect the information of this section, in a
Theorem (λγ&CQ ⊃ [λMQ]&). λγ&CQ is a proper equational extension of λMQ, the proof-theory of
Minimalkalkül (in the definitional embedding sense).
Proof . Completed in the above. ¤
This yields, of course, Cons(λMQ), i.e., Post-consistecy for λMQ, well-known also by different means (the
proof-theory of HQ [Prawitz 65], Martin-Löf’s CTT, the Automath literature, etc.).
A less abrupt generalization of the [∨,∃]m-proof-operators than that available in CQ can be obtained from
the following extended exercise, in two parts [part two comes at the end of the next section].
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Exercise (The “negative” DQ-proof operators: first part). State and derive, in λγ&CQ, the DQ-analogues
([∨,∃]d-rules) of the Minimalkalkül [∨,∃]-rules (using, to this effect, the Boolean simulation of the “Clavian”
proof-operators j1, j2, Jd, td, qd, suggested earlier sub PROOF-SYNTAX).
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Chapter V

Negative proof-operators: injections and [∨,∃]-selectors

We consider next the full structure `∗[CQ] and λγ-theories, based on [⊥,→,∧,∨,∀,∃]. Specifically, we in-
vestigate the most general equational behavior of the negative Boolean proof operations associated to (the
classical) [∨,∃], as available, ultimately, under the stratification régime of `∗[CQ].

One could define an equational system λγ[∗]CQ on `∗[CQ] that extends λγ&CQ properly in the `∗[CQ]-
syntax. Using the standard λ-calculus terminology, this is a (typed) λγ-theory . From an intuitive
point of view, λγ[∗]CQ must be identified with the proof-theory of first-order classical logic based on
[⊥,→,∧,∨,∀,∃]. λγ[∗]CQ can be formulated explicitly, by adding (a rather long list of rules as) equational
postulates to λγ&CQ: one can obtain these postulates first as derived rules [equations] of λγ&CQ). For
present purposes, we don’t need the full λγ[∗]CQ. Mentioned next are only those rules of λγ[∗]CQ that
have been estimated relevant in the discussion of the first-order Heyting proof-calculus.

Assumed in what follows are the standard Boolean definitions of ∨, ∃ and the canonical simulation of the
[∨,∃] proof-operations of `∗[CQ] in terms of “positive” proof-operations and γ-abstraction.

[βη-∨]-and [βη-∃]-rules in λγ&CQ. We obtain first the most general [∨,∃]-analogues of the (λγ)-βη-postulates
of λγ&CQ.
Heuristically, we have to identify the [∨,∃]-proof-détours21as well as the “complex” applications of reductio
ad absurdum, beyond the [⊥,→,∧,∀]-proof-syntax (i.e., reductio from [∨,∃]-formulas). The latter should
yield the reduction/equational behavior of p-terms γx:¬A.e[[x]], for A ≡ [B ∨ C] and A ≡ [∃u.B[[u]]].
The following βη-[∨,∃]-rules are derivable in λγ&CQ, modulo the canonical definition of the [∨,∃]-proof-
operations in `&[CQ]. [In order to ease readability, the official Minimalkalkül-notation is used, whenever
this is possible.]
Theorem (βη-[∨,∃]-rules in λγ&CQ).
(1) Evaluation rules.

(111) β∨-evaluation:
[β∨] Γ ` ∨

\(z:¬C).(j(x:¬A,y:¬B).e[[x,y]]) ♦ [λx0:A.e1,λy0:B.e2] = γz:¬C.e[[x:=c1]][[y:=c2]] [: C],
if Γ[x:¬A][y:¬B] ` e[[x,y]] : ⊥, Γ[x0:A][z:¬C] ` e1[[x0,z]] : ⊥, Γ[y0:B][z:¬C] ` e2[[y0,z]] : ⊥,

where c1[[z]] ≡ λx0:A.e1[[x0,z]] is free for x in e[[x,y]], and c2[[z]] ≡ λy0:B.e2[[y0,z]] is free for y in e[[x,y]],
(112) “∨-extensionality”:

[η∨] Γ ` ∨
\(z:¬(A∨B)).f ♦ [λx:A.z(e1[[x]]),λy:B.z(e2[[y]])] = f, if Γ ` f : A ∨ B,

where e1[[x]] ≡ j1[[A,B]](x:A) ≡ j(x1:¬A,y1:¬B).x1(x), e2[[y]] ≡ j2[[A,B]](y:B) ≡ j(x1:¬A,y1:¬B).y1(y),
(121) β∃-evaluation:

[β∃] Γ ` ∨
∪(z:¬C).(J(x:¬A[[t]]).e[[x]]) ♦ [!u.λx0:A[[u]].e0[[u,x0,z]]] = γz:¬C.e[[x:=c]] [: C],

if Γ ‖− t :: U, Γ[x:¬A[[t]]] ` e[[x]] : ⊥, Γ[u:U][x0:A[[u]]][z:¬C] ` e0[[u,x0,z]] : ⊥, provided u /∈ FVu(C),
where t is free for u in e0[[u,x0,z]], and c[[z]] ≡ λx0:A[[u:=t]].e0[[u:=t]][[x0,z]] is free for x in e[[x]],
(122) “∃-extensionality”:

[η∃] Γ ` ∨
∪(z:¬(∃u.A[[u]])).f ♦ [!u.λx:A[[u]].z([u,x:A[[u]]])] = f, if Γ ` f : ∃u.A[[u]],

where [u, x:A[[u]]] ≡ J(x1:¬A[[u]]).x1(x), [u /∈ FVu(∃u.A[[u]])].

21Approximating, in traditional terms, these would be applications of “introduction”-rules, immediately followed by
applications of corresponding “elimination”-rules. The meaning of the “correspondence” should be clear, for the [∨,∃]-détours,
since we agree, on this point, with the traditional “int-elim” scheme.
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(2) Normal reductio rules (βγ-[∨,∃]-rules):
[hβγ∨] Γ ` γz:¬(A∨B).e[[x:=a]][[y:=b]] = j(x:¬A,y:¬B).e[[x,y]] [: A ∨ B], if Γ[x:¬A][y:¬B] ` e[[x,y]] : ⊥,

where
a[[z]] ≡ λx0:A.z(j1[[A,B]](x0)) ≡ λx0:A.z(j(x:¬A,y:¬B).x(x0)) is free for x in e[[x,y]], and
b[[z]] ≡ λy0:B.z(j2[[A,B]](y0)) ≡ λy0:B.z(j(x:¬A,y:¬B).y(y0)) is free for y in e[[x,y]],

[hβγ∃] Γ ` γz:¬(∃u.A[[u]]).e[[x:=a]] = J(x:¬A[[t]]).e[[x]] [: ∃u.A[[u]]], if Γ ‖− t :: U, Γ[x:¬A[[t]]] ` e[[x]] : ⊥,
where a[[z]] ≡ λx0:A[[t]].z([t,x0:A[[t]]]) ≡ λx0:A[[t]].z(J(x:¬A[[t]]).x(x0)).

(3) Congruence rules.
(31) ∨-congruence.

[ξ∨j] Γ ` j(x:¬A,y:¬B).e1[[x,y]] = j(x:¬A,y:¬B).e2[[x,y]] [: A ∨ B],
if Γ[x:¬A][y:¬B] ` e1[[x,y]] = e2[[x,y]] : ⊥,

[ξ∨∨
\] Γ ` ∨

\(z:¬C).f ♦ [λx:A.a, λy:B.b] =
∨

\(z:¬C).g ♦ [λx:A.c, λy:B.d] [: C],
if Γ ` f = g : A ∨ B, Γ[x:A][z:¬C] ` a[[x,z]] = c[[x,z]] : ⊥, Γ[y:B][z:¬C] ` b[[y,z]] = d[[y,z]] : ⊥,

(32) ∃-congruence.
[ξ∃J] Γ ` J(x:¬A[[t]]).e1[[x]] = J(x:¬A[[t]]).e2[[x]] [: ∃u.A[[u]]],

if Γ ‖− t :: U, Γ[x:¬A[[t]]] ` e1[[x]] = e2[[x]] : ⊥, provided [u:U] is not in Γ,
[ξ∃∨∪] Γ ` ∨

∪(z:¬C).f ♦ [!u.λx:A[[u]].e1] =
∨
∪(z:¬C).g ♦ [!u.λx:A[[u]].e2] [: C],

if Γ ` f = g : ∃u.A ∨ B, Γ[u:U][x:A[[u]]][z:¬C] ` e1[[u,x,z]] = e2[[u,x,z]] : ⊥, provided u /∈ FVu(C).
Proof . Routine [exercise]. The explicit derivations should make clear the fact that the diagonalization-free
fragment of λγ&CQ (a proof-system λγπ!, say) is sufficient. Ignoring the congruence rules, the minimal
λγ&CQ-derivability conditions are:
(1) Evaluation rules:
[β∨]: [β → λ], [β∧1], [β∧2], [η∨]: [β → λ], [η → λ], [η∧], [βγ⊥], [hβγ →],
[β∃]: [β → λ], [β∀], [η∃]: [β → λ], [η → λ], [η∀], [βγ⊥], [hβγ →].

(2) Reductio rules:
[hβγ∨]: [β → λ], [η → λ], [βγ⊥], [hβγ →], [hβγ∃]: [β → λ], [η → λ], [βγ⊥], [hβγ →].

(3) Congruence rules: by the congruence rules of λγ&CQ. ¤
The negative Boolean selectors: equational behavior . In a certain sense, the negative Boolean selectors

∨
\,

and
∨
∪, resp. behave like the negative Boolean inferential sumptor (i.e., the γ-abstractor). Indeed, there

are β-structural analogies [γ ≡ γ` '
∨

\], [γ ≡ γ` '
∨
∪] that can be catalogued systematically.

More generally, from the point of view of certain well-behaved sub-systems of classical logic, – “positively
structured” on the inferential level, so to speak – the inferential sumptor γ` should have rather been
primitively classified as [being] an inferential selector

∨
`, say (we don’t have this in the primitive proof-

syntax, here). [E.g., the special case of γ which makes sense for the intuitionist – viz. ω (the ex falso-
family) below, where ωA(e) ≡ γz:¬A.e, [z /∈ FVλ(e)] – is to be viewed as a genuine selector , within the
Heyting proof-calculus.] As an alternative epistemic decision, one could choose to define a [Boolean] λγ-
calculus λγ{∗}CQ, say, (on [⊥,→,∧,∨,∀,∃]), “symmetrically”, with both a negative inferential sumptor γ`
and an additional negative inferential selector

∨
`, as proof-primitives. Technically, this would increase

considerably the number of the “negative proof-isomorphisms” required in order to characterize the new
“duality” [as well as the induced interactions with the remaining proof-operators].

From this we retain, in what follows, only the information relevant in the analysis of HQ.

Remark ([β
∨

\⊥]-and [β
∨
∪⊥]-rules in λγ&CQ). The following [

∨
\,
∨
∪]-analogues of [βγ⊥] are derivable

in λγ&CQ, using [βγ⊥] (note that the hypotheses yield x, y, z, z0 /∈ FVλ(h)):
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[β
∨

\⊥] Γ ` γz:¬C.(
∨

\(z0:>).h ♦ [λx:A.e1, λy:B.e2]) =
∨

\(z:¬C).h ♦ [λx:A.c1, λy:B.c2] [: C],
if Γ ` h : A ∨ B, Γ[x:A][z:¬C][z0:>] ` e1[[x,z,z0]] : ⊥, Γ[y:B][z:¬C][z0:>] ` e2[[y,z,z0]] : ⊥,

where c1[[x,z]] ≡ e1[[x,z,z0]][[z0:=Ω]], and c2[[x,z]] ≡ e2[[x,z,z0]][[z0:=Ω]],
[β

∨
∪⊥] Γ ` γz:¬C.(

∨
∪(z0:>).h ♦ [!u.λx:A[[u]].e]) =

∨
∪(z:¬C).h ♦ [!u.λx:A[[u]].c] [: C],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬C][z0:>] ` e[[u,x,z,z0]] : ⊥, provided u /∈ FVu(C),
where c[[u,x,z]] ≡ e[[u,x,z,z0]][[z0:=Ω]].

The following analogues of the βγ-rules are derivable in λγ&CQ.
Theorem (Positive [β

∨
\]-and [β

∨
∪]-rules in λγ&CQ).

(1) Positive [β
∨

\]-rules:
[β

∨
\→] Γ ` (

∨
\(z:¬(F→G)).h ♦ [λx:A.e1, λy:B.e2])(f) =

∨
\(z1:¬G).h ♦ [λx:A.c1, λy:B.c2] [: G],

if Γ ` h : A ∨ B, Γ ` f : F,
and Γ[x:A][z:¬(F→G)] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬(F→G)] ` e2[[y,z]] : ⊥,

where [x, y, z, z1 /∈ FVλ(f,h)], [z1 /∈ FVλ(e1[[x,z]],e2[[y,z]])],
c1[[x,z1]] ≡ e1[[x]][[z:=λz:(F→G).z1(z(f))]], and c2[[y,z1]] ≡ e2[[y]][[z:=λz:(F→G).z1(z(f))]],

[β
∨

\∧1] Γ ` p1(
∨

\(z:¬(F∧G)).h ♦ [λx:A.e1, λy:B.e2]) =
∨

\(z1:¬F).h ♦ [λx:A.c1, λy:B.c2] [: F],
if Γ ` h : A ∨ B, Γ[x:A][z:¬(F∧G)] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬(F∧G)] ` e2[[y,z]] : ⊥,

where [x, y, z, z1 /∈ FVλ(h)], [z1 /∈ FVλ(e1[[x,z]],e2[[y,z]])],
c1[[x,z1]] ≡ e1[[x]][[z:=λz:(F∧G).z1(p1(z))]], and c2[[y,z1]] ≡ e2[[y]][[z:=λz:(F∧G).z1(p1(z))]],

[β
∨

\∧2] Γ ` p2(
∨

\(z:¬(F∧G)).h ♦ [λx:A.e1, λy:B.e2]) =
∨

\(z2:¬G).h ♦ [λx:A.c1, λy:B.c2] [: G],
if Γ ` h : A ∨ B, Γ[x:A][z:¬(F∧G)] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬(F∧G)] ` e2[[y,z]] : ⊥,

where [x, y, z, z2 /∈ FVλ(h)], [z2 /∈ FVλ(e1[[x,z]],e2[[y,z]])],
c1[[x,z2]] ≡ e1[[x]][[z:=λz:(F∧G).z2(p2(z))]], and c2[[y,z2]] ≡ e2[[y]][[z:=λz:(F∧G).z2(p2(z))]],

[β
∨

\∀] Γ ` (
∨

\(z:¬(∀v.F[[v]])).h ♦ [λx:A.e1, λy:B.e2])[t] =
∨

\(z1:¬F[[t]]).h ♦ [λx:A.c1, λy:B.c2] [: F[[t]]],
if Γ ` h : A ∨ B, Γ ‖− t :: U,
and Γ[x:A][z:¬(∀v.F[[v]])] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬(∀v.F[[v]])] ` e2[[y,z]] : ⊥,

where [x, y, z, z1 /∈ FVλ(h)], [z1 /∈ FVλ(e1[[x,z]],e2[[y,z]])], [v /∈ FVu(A,B,h,e1,e2)],
F[[t]] ≡ F[[v:=t]], with t free for v in F[[v]],
c1[[x,z1]] ≡ e1[[x]][[z:=λz:(∀v.F[[v]]).z1(z[t])]], and c2[[x,z1]] ≡ e2[[y]][[z:=λz:(∀v.F[[v]]).z1(z[t])]].

(2) Positive [β
∨
∪]-rules:

[β
∨
∪→] Γ ` (

∨
∪(z:¬(F→G)).h ♦ [!u.λx:A[[u]].e])(f) =

∨
∪(z1:¬G).h ♦ [!u.λx:A[[u]].c] [: G],

if Γ ` f : F, Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬(F→G)] ` e[[u,x,z]] : ⊥,
where [x, z, z0, z1 /∈ FVλ(f,h)], [z1 /∈ FVλ(e[[u,x,z]])],
c[[u,x,z1]] ≡ e[[u,x]][[z:=λz:(F→G).z1(z(f))]], [u /∈ FVu(F,G)],

[β
∨
∪∧1] Γ ` p1(

∨
∪(z:¬(F∧G)).h ♦ [!u.λx:A[[u]].e]) =

∨
∪(z1:¬F).h ♦ [!u.λx:A[[u]].c] [: F],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬(F∧G)] ` e[[u,x,z]] : ⊥,
where [x, z, z1 /∈ FVλ(h)], [z1 /∈ FVλ(e[[u,x,z]])],
c[[u,x,z1]] ≡ e[[u,x]][[z:=λz:(F∧G).z1(p1(z))]], [u /∈ FVu(F,G)],

[β
∨
∪∧2] Γ ` p2(

∨
∪(z:¬(F∧G)).h ♦ [!u.λx:A[[u]].e]) =

∨
∪(z2:¬G).h ♦ [!u.λx:A[[u]].c] [: G],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬(F∧G)] ` e[[u,x,z]] : ⊥,
where [x, z, z2 /∈ FVλ(h)], [z2 /∈ FVλ(e[[u,x,z]])],
c[[u,x,z2]] ≡ e[[u,x]][[z:=λz:(F∧G).z2(p2(z))]], [u /∈ FVu(F,G)],

[β
∨
∪∀] Γ `(

∨
∪(z:¬(∀v.F[[v]])).h ♦ [!u.λx:A[[u]].e])[t] =

∨
∪(z1:¬F[[t]]).h ♦ [!u.λx:A[[u]].c] [: F[[t]]],

if Γ ‖− t :: U, Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬(∀v.F[[v]])] ` e[[u,x,z]] : ⊥,
where [x, z, z1 /∈ FVλ(h)], [z1 /∈ FVλ(e[[u,x,z]])],
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F[[t]] ≡ F[[v:=t]], with t free for v in F[[v]].
c[[u,x,z1]] ≡ e[[u,x]][[z:=λz:(∀v.F[[v]]).z1(z[t])]], [u /∈ FVu(∀v.F[[v]])].

Proof . Straightforward [exercise] (use the βγ-rules [βγ →], [βγ∧1], [βγ∧2], and [βγ∀], resp.) ¤
Remark (Extensional [β

∨
\]- and [β

∨
∪]-lifting). It is easy to see that “extensionally lifted” analogues

[hβ
∨

\→], [hβ
∨

\∧], [hβ
∨

\∀] and [hβ
∨
∪→], [hβ

∨
∪∧], [hβ

∨
∪∀], resp. of the positive [β

∨
\]- and [β

∨
∪]-rules:

[β
∨

\→], [β
∨

\∧1], [β
∨

\∧2], [β
∨

\∀] and [β
∨
∪→], [β

∨
∪∧1], [β

∨
∪∧2], [β

∨
∪∀] resp. are also derivable in

λγ&CQ. The statement and the derivation of the “lifted” analogues of the [β
∨

\]- and [β
∨
∪]-rules are left

as exercises. [These rules are perhaps more dificult to state than to prove!]

Remark (The β-[
∨

\,
∨
∪]-rules: λγ&CQ-derivability conditions). By inspecting the corresponding explicit

derivations, one finds that the [β
∨

\]- and [β
∨
∪]-rules above are derivable in a diagonalization-free fragment

of λγ&CQ without [∧,∀]-“extensionality”. However, the derivation of the “lifted” variants [hβ
∨

\∧], [hβ
∨
∪∧]

and [hβ
∨

\∀], [hβ
∨
∪∀] resp. require [η∧] and [η∀], resp.

As shown below, the β-[
∨

\,
∨
∪]-rules specialize to “positive Heyting [∨,∃]-commuting rules”.

Remark (Special cases of the [
∨

\,
∨
∪]-selectors). The following equivalences are also derivable, as limit

cases, in λγ&CQ, using [βγ⊥] and [β → λ], [exercise]:
[
∨

\tm:⊥] Γ ` ∨
\(z:>).h ♦ [λx:A.e1, λy:B.e2] = t(h,[x:A].e1:⊥,[y:B].e2:⊥] [: ⊥],

if Γ ` h : A ∨ B, Γ[x:A] ` e1[[x]] : ⊥, Γ[y:B] ` e2[[y]] : ⊥,
provided z /∈ FVλ(e1[[x]],e2[[y]]), [x, y, z /∈ FVλ(h)],

[
∨
∪qm:⊥] Γ ` ∨

∪(z:>).h ♦ [!u.λx:A[[u]].e] = q(h,[u:U][x:A[[u]]].e:⊥] [: ⊥],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` e[[u,x]] : ⊥,
provided z /∈ FVλ(e[[u,x]]), [x, z /∈ FVλ(h)], [u /∈ FVu(h)].

Remark (Local [j,
∨

\]-extensionality in λγ&CQ). Although the ∃-pair of proof-operators [J,
∨
∪] generalizes

the ∨-pair [j,
∨

\], they differ, in λγ&CQ, on extensionality properties. E.g., where x, y, z, x0, y0 /∈ FVλ(f),
one has, using [hβγ∨], [β → λ], [β

∨
\⊥] and [η∨],

[η∨j] Γ ` j(x:¬A,y:¬B).
∨

\(z:>).f ♦ [λx0:A.x(x0),λy0:B.y(y0)] = f, if Γ ` f : A ∨ B,
(which can be further simplified, by [

∨
\tm:⊥]) [exercise]. There is no ∃-analogue of this (for [J,

∨
∪]),

however.
∨

\- and
∨
∪-diagonal situations in λγ&CQ. Finally, we examine the mixed

∨
\- and

∨
∪-analogues of the

γ-diagonalization rule [
∮

γ].
The following “simple diagonalization” rules are derivable in λγ&CQ.
Lemma (Simple

∨
\- and

∨
∪-diagonalization in λγ&CQ).

(1) [
∮ ∨

\γ]-rules: For x, y, z, z0 /∈ FVλ(h),
[
∮ ∨

\γ⊥]
Γ ` ∨

\(z:¬C).h ♦ [λx:A.f(z(γz0:¬C.e1)), λy:B.e2] =
∨

\(z:¬C).h ♦ [λx:A.f(e1[[x,z,z]]), λy:B.e2] [: C],
if Γ ` h : A ∨ B, Γ[x:A][z:¬C] ` f[[x,z]] : >,
and Γ[x:A][z:¬C][z0:¬C] ` e1[[x,z,z0]] : ⊥, Γ[y:B][z:¬C] ` e2[[y,z]] : ⊥,

where e1[[x,z,z]] ≡ e1[[x,z,z0]][[z0:=z]], [z0 /∈ FVλ(f[[x,z]],e2[[y,z]])],
[
∮ ∨

\⊥γ]
Γ ` ∨

\(z:¬C).h ♦ [λx:A.e1, λy:B.g(z(γz0:¬C.e2))] =
∨

\(z:¬C).h ♦ [λx:A.e1, λy:B.g(e2[[y,z,z]])] [: C],
if Γ ` h : A ∨ B, Γ[y:B][z:¬C] ` g[[y,z]] : >,
and Γ[x:A][z:¬C] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬C][z0:¬C] ` e2[[y,z,z0]] : ⊥,

where e2[[y,z,z]] ≡ e2[[y,z,z0]][[z0:=z]], [z0 /∈ FVλ(e1[[x,z]],g[[y,z]])],
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[
∮ ∨

\γγ]
Γ ` ∨

\(z:¬C).h ♦ [λx:A.f(z(γz0:¬C.e1)),λy:B.g(z(γz0:¬C.e2))] =
∨

\(z:¬C).h ♦ [λx:A.fc1,λy:B.gc2] [: C],
if Γ ` h : A ∨ B, Γ[x:A][z:¬C] ` f[[x,z]] : >, Γ[y:B][z:¬C] ` g[[y,z]] : >,
Γ[x:A][z:¬C][z0:¬C] ` e1[[x,z,z0]] : ⊥, Γ[y:B][z:¬C][z0:¬C] ` e2[[y,z,z0]] : ⊥,

where c1 ≡ e1[[x,z,z]] ≡ e1[[x,z,z0]][[z0:=z]], c2 ≡ e2[[y,z,z]] ≡ e2[[y,z,z0]][[z0:=z]], [z0 /∈ FVλ(f[[x,z]],g[[y,z]])],

(2) [
∮ ∨

∪γ]-rule: For x, y, z, z0 /∈ FVλ(h), and z0 /∈ FVλ(f[[u,x,z]]),

[
∮ ∨

∪γ]
Γ ` ∨

∪(z:¬C).h ♦ [!u.λx:A[[u]].f(z(γz0:¬C.e[[u,x,z,z0]]))] =
∨
∪(z:¬C).h ♦ [!u.λx:A[[u]].f(e[[u,x,z,z]])] [: C],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬C] ` f[[u,x,z]] : >,
and Γ[u:U][x:A[[u]]][z:¬C][z0:¬C] ` e[[u,x,z,z0]] : ⊥, provided u /∈ FVu(C),

where e[[u,x,z,z]] ≡ e[[u,x,z,z0]][[z0:=z]],
Proof . Straightforward [exercise] (use [

∮
γ]). ¤

The following consequences of [
∮ ∨

\γγ] and [
∮ ∨

∪γ] (modulo [β
∨

\⊥] and [β
∨
∪⊥]) are the general Boolean

variants of the Heyting [∨ω]- and [∃ω]-“commuting conversions”.
Corollary ([β∨γ]- and [β∃γ]-conversions).

(1) [β
∨

\⊥-
∮ ∨

\γγ]-conversion: For z1 /∈ FVλ(e1[[x,z,z0]]), and z1 /∈ FVλ(e2[[y,z,z0]]),
[β∨γ] Γ ` γz:¬C.

∨
\(z0:>).h ♦ [λx:A.e1, λy:B.e2] =

∨
\(z:¬C).h ♦ [λx:A.c1[[x,z]], λy:B.c2[[y,z]]] : C,

if Γ ` h : A ∨ B, Γ[x:A][z:¬C][z0:>] ` e1[[x,z,z0]] : ⊥, Γ[y:B][z:¬C][z0:>] ` e2[[y,z,z0]] : ⊥,
where c1[[x,z]] ≡ z(γz1:¬C.e1[[x,z,z0]][[z0:=Ω]]), c2[[y,z]] ≡ z(γz1:¬C.e2[[x,z,z0]][[z0:=Ω]]),

(2) [β
∨
∪⊥-

∮ ∨
∪γ]-conversion: For z1 /∈ FVλ(e[[u,x,z,z0]]),

[β∃γ] Γ ` γz:¬C.
∨

\(z0:>).h ♦ [!u.λx:A[[u]].e] =
∨

\(z:¬C).h ♦ [!u.λx:A[[u]].c[[u,x,z]]] [: C],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]][z:¬C][z0:>] ` e[[u,x,z,z0]] : ⊥,

where c[[u,x,z]] ≡ z(γz1:¬C.e[[u,x,z,z0]][[z0:=Ω]]).
Proof . For [β ∨ γ]: Assume the hypotheses [so that z1 /∈ FVλ(e1,e2)]. Then, with

c ≡ ∨
\(z:¬C).h ♦ [λx:A.e1[[x,z]][[z0:=Ω]], λy:B.e2[[y,z]][[z0:=Ω]]],

one has Γ ` (LHS) = c : C, by [β
∨

\⊥], and Γ ` (RHS) = c : C, by [
∮ ∨

\γγ] and [β → λ]. For [β∃γ]:
analogously, using [β

∨
∪⊥], and [

∮ ∨
∪γ], [β → λ], resp. (So, the derivations of [β ∨ γ] and [β∃γ] in λγ&CQ

require [
∮

γ], too.) ¤
Finally, we have a number of [

∮ ∨
\]- and [

∮ ∨
∪]-rules, describing cross [

∨
\,
∨
∪]-diagonal situations or

“[
∨

\,
∨
∪]-commuting” cases in λγ&CQ, when a

∨
(\,∪)-selector occurs within the scope of a

∨
(\,∪)-selector,

as its “main (neutral) branch”. Schematically:∨
(\,∪)(z:¬E).(

∨
(\,∪)(z0:¬C).h ♦ ϕ¿. . . f. . .À) ♦ ψ¿. . . g. . .À.

An obvious systematic search discloses 12 (= 8 [
∮ ∨

\] + 4 [
∮ ∨

∪]) distinct cases in λγ&CQ. Of these, only
4 (= 2 [

∮ ∨
\] + 2 [

∮ ∨
∪]) can be seen to admit of proper “positive” instances, specializing to relevant

“commuting situations” in the Heyting proof-calculus for HQ. Ignoring the remaining cases, we obtain,
finally, the following general

∨
\- resp.

∨
∪-“commuting rules”.

Theorem (Cross
∨

\-diagonalization in λγ&CQ). For z, z0 /∈ FVλ(h,a[[x]],b[[y]],f[[x]],g[[y]]),
[
∮ ∨

\

∨
\:∨∨]

Γ ` ∨
\(z:¬E).c ♦ [λx0:F.e1,λy0:G.e2] =

∨
\(z:¬E).h ♦ [λx:A.f[[x]](z(c1[[x]])),λy:B.g[[y]](z(c2[[y]]))] [: E],

if Γ ` h : A ∨ B, Γ[x:A] ` a[[x]] : F ∨ G, Γ[y:B] ` b[[y]] : F ∨ G, Γ[x:A] ` f[[x]] : >, Γ[y:B] ` g[[y]] : >,
and Γ[x0:F][z:¬E] ` e1[[x0,z]] : ⊥, Γ[y0:G][z:¬E] ` e2[[y0,z]] : ⊥,

where
c ≡ ∨

\(z0:¬C).h ♦ [λx:A.f[[x]](z0(a[[x]])), λy:B.g[[y]](z0(b[[y]]))], for C ≡ F ∨ G, and
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c1[[x]] ≡ ∨
\(z:¬E).a[[x]] ♦ [λx0:F.e1[[x0,z]], λy0:G.e2[[y0,z]]],

c2[[y]] ≡ ∨
\(z:¬E).b[[y]] ♦ [λx0:F.e1[[x0,z]], λy0:G.e2[[y0,z]]],

[
∮ ∨

∪
∨

\:∃∃]
Γ ` ∨

∪(z:¬E).c ♦ [!u.λx0:F.e] =
∨

\(z:¬E).h ♦ [λx:A.f(z(e1[[x]])), λy:B.g(z(e2[[y]]))] [: E],
if Γ ` h : A ∨ B, Γ[x:A] ` a[[x]] : ∃u.F[[u]], Γ[y:B] ` b[[y]] : ∃u.F[[u]], Γ[x:A] ` f[[x]] : >, Γ[y:B] ` g[[y]] : >,
and Γ[u:U][x0:F[[u]]][z:¬E] ` e[[u,x0,z]] : ⊥, provided u /∈ FVu(E),

where
c ≡ ∨

\(z0:¬C).h ♦ [λx:A.f(z0(a[[x]])), λy:B.g(z0(b[[y]]))], for C ≡ ∃u.F[[u]], and
e1[[x]] ≡ ∨

∪(z:¬E).a[[x]] ♦ [!u.λx0:F[[u]].e[[u,x0,z]]], e2[[y]] ≡ ∨
∪(z:¬E).b[[y]] ♦ [!u.λx0:F[[u]].e[[u,x0,z]]].

Proof . Routine. We record the minimal derivability conditions in λγ&CQ, leaving the details to the reader.
For [

∮ ∨
\

∨
\:∨∨]: where

e’ ≡ γz:¬E.h(<λx:A.f[[x]](a[[x]](d[[y]])):¬A, λy:B.g[[y]](b[[y]](d[[z]])):¬B>),
with d[[z:¬E]] ≡ <λx0:F.e1[[x0,z]]:¬F, λy0:G.e2[[y0,z]]:¬G>, we have Γ ` (LHS) = e’ : E, by [β → λ], [βγ⊥],
[hβγ →], and Γ ` (RHS) = e’ : E, by [

∮
γ].

For [
∮ ∨

∪
∨

\:∃∃]: where
e’ ≡ γz:¬E.h(<λx:A.f[[x]](a[[x]](e0[[z]])):¬A, λy:B.g[[y]](b[[y]](e0[[z]])):¬B>),

with e0[[z:¬E]] ≡ !u.λx0:F[[u]].e[[u,x0,z]] : ∀u.¬F[[u]], we have Γ ` (LHS) = e’ : E, by [β → λ], [βγ⊥], and
[hβγ →], and Γ ` (RHS) = e’ : E, by [

∮
γ]. ¤

Theorem (Cross
∨
∪-diagonalization in λγ&CQ). For z, z0 /∈ FVλ(h,a[[u,x]],f[[u,x]]),

[
∮ ∨

\

∨
∪:∨]

Γ `∨
\(z:¬E).c ♦ [λx0:F.e1, λy0:G.e2] =

∨
∪(z:¬E).h ♦ [!u.λx:A[[u]].f(z(e[[u,x]]))] [: E],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` a[[u,x]] : F ∨ G, Γ[u:U][x:A[[u]]] ` f[[u,x]] : >,
and Γ[x0:F][z:¬E] ` e1[[x0,z]] : ⊥, Γ[y0:G][z:¬E] ` e2[[y0,z]] : ⊥, [u /∈ FVu(E,e1[[x0,z]],e2[[y0,z]])],

where
c ≡ ∨

∪(z0:¬C).h ♦ [!u.λx:A[[u]].f[[u,x]](z0(a[[u,x]]))], for C ≡ F ∨ G [u /∈ FVu(C)], and
e[[u,x]] ≡ ∨

\(z:¬E).a[[u,x]] ♦ [λx0:F.e1[[x0,z]], λy0:G.e2[[y0,z]]],
[
∮ ∨

∪
∨
∪:∃]

Γ ` ∨
∪(z:¬E).c ♦ [!v.λx0:F[[v]].e] =

∨
∪(z:¬E).h ♦ [!u.λx:A[[u]].f(z(b[[u,x]]))] [: E],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` a[[u,x]] : ∃v.F[[v]], Γ[u:U][x:A[[u]]] ` f[[u,x]] : >,
and Γ[v:U][x0:F[[v]]][z:¬E] ` e[[v,x0,z]] : ⊥, [u /∈ FVu(e[[v,x0,z]])], [v /∈ FVu(E)],

where
c ≡ ∨

∪(z0:¬C).h ♦ [!u.λx:A[[u]].f[[u,x]](z0(a[[u,x]]))], for C ≡ ∃v.F[[v]], [u /∈ FVu(C)], and
b[[u,x]] ≡ ∨

∪(z:¬E).a[[u,x]] ♦ [!v.λx0:F[[v]].e[[v,x0,z]]].
Proof . Routine [exercise]. The minimal derivability conditions in λγ&CQ are as follows.
For [

∮ ∨
\

∨
∪:∨]: where

e’ ≡ γz:¬E.h(!u.λx:A[[u]].f[[u,x]](a[[u,x]](d[[z]]))), with d[[z:¬E]] ≡ <λx0:F.e1[[x0,z]]:¬F, λy0:G.e2[[y0,z]]:¬G>,
one has Γ ` (LHS) = e’ : E, by [β → λ], [βγ⊥], and [hβγ →], and Γ ` (RHS) = e’ : E, by [

∮
γ].

For [
∮ ∨

∪
∨
∪:∃]: where

e’ ≡ γz:¬E.h(!u.λx:A[[u]].f[[u,x]](a[[u,x]](d[[z]]))), with d[[z:¬E]] ≡ !v.λx0:F[[v]].e[[v,x0,z]] : ∀v.¬F[[v]],
one has Γ ` (LHS) = e’ : E, by [β → λ], [βγ⊥], and [hβγ∀], and Γ ` (RHS) = e’ : E, by [

∮
γ]. ¤

Remark (“[
∨

\,
∨
∪]-diagonal situations”: λγ&CQ-derivability conditions). The derivations of the Boolean

“[
∨

\,
∨
∪]-diagonal” rules in λγ&CQ do not depend on the “extensionality” conditions [η∧] and [η∀]. How-

ever, as expected, these derivations require diagonalization [
∮

γ].
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As shown below, [
∮ ∨

\

∨
\:∨∨] and [

∮ ∨
∪
∨

\:∃∃] specialize to appropriate HQ “∨-commuting” rules, whereas
[
∮ ∨

\

∨
∪:∨], [

∮ ∨
∪
∨
∪:∃] specialize to HQ “∃-commuting” rules. These are the “negative Heyting [∨,∃]-

commuting rules”.
Like its first half, the following exercise is meant to evidentiate specific features of the non-Brouwerian
contents of CQ.
Exercise (Negative DQ-proof operators: second part). State and derive, in λγ&CQ, appropriate [∨,∃]d-rules
for the Curry logic DQ of “complete refutability”, in analogy with the CQ-rules reviewed above, viz.,

• βη-[∨,∃]d-rules,
• positive β-[td,qd]-rules, and
• “commuting” [

∮td]- and [
∮qd]-rules (i.e., cross [td,qd]-diagonal situations),

using the Boolean simulations of j1, j2, Jd, td, qd resp., suggested in the discussion of proof-[term]-syntax.
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Chapter VI

Negative inferential proof-operators: γ, ε and ω

Splitting γ: ex falso quodlibet and consequentia mirabilis. For subsequent purposes, it is appropriate
to examine succintly the λγ&CQ-proof-properties of two complementary instances of the γ-abstractions
(reductio ad absurdum). These are well-known in the (pre-Fregean) logical tradition as ex falso quodlibet
and consequentia mirabilis [the Law of Clavius], resp.

(1) Ex falso quodlibet. Within the extended structure `∗[CQ], the definition of ωA(a:⊥) [≡ ω(a:⊥):A :=
γx:¬A.a, x /∈ FVλ(a)] and the ω[[A]]-combinator family (‖− A :: H, A in [⊥,→,∧,∨,∀,∃]) yield immediately,
by the “cut” rule < $K >, the `∗[CQ]-image of the familiar “falsum-rule” of Heyting’s logic:

Lemma (The “falsum”-rule, ex falso quodlibet). For all formulas A of [⊥,→,(∧,∨,∀,∃)], and any “U-context”
Γu containing the U-parameters of FVu(A),

(→iω)h Γ ` a : ⊥ ⇒ Γ ` ωA(a) : A [the “falsum”-rule],
(ω): Γu ` ω[[A]] : ⊥ → A [ex falso quodlibet].

Clearly, (→iω)h obtains in the minimal Boolean structure `[CQ]. There are several ways of generalizing this
operator (shown below).

(2) Consequentia mirabilis, the “laws” of Clavius (1574) and Peirce (1885). The classical tautologies
A → B → A → A and (its instance) ¬A → A → A have a venerable history (scattered references can
be found below). We examine corresponding proofs-forms (proof-operators, proof-combinators). For all
formulas A, B in [⊥,→,(∧,∨,∀,∃)], one has:

Definition (The Rule of Clavius and the “Clavian functionals”).

εx:¬A.a[[x]] [≡ ε([x:¬A].a[[x]]:A):A] := γx:¬A.x(a[[x]]),
E[[A]] := λx:(¬A→A).εy:¬A.x(y) [≡ λx:(¬A→A).γy:¬A.y(x(y))].

Definition (The Rule of Peirce and Peirce’s Law).

εA,B(f) [≡ ε(f:A→B→A):A] := εx:¬A.f(λy:A.ωB(x(y))) [x /∈ FVλ(f)],
ε[[A,B]] := λx:(A→B→A).εA,B(x) [≡ λx:(A→B→A).εy:¬A.x(λz:A.ωB(y(z)))]

[≡ λx:(A→B→A).γy:¬A.y(x(λz:A.γz0:¬B.y(z)))].

Lemma (The “Law of Clavius” and “Peirce’s Law”). For all formulas A, B in [⊥,→,(∧,∨,∀,∃)], and any
proof-context Γ,

(→iε) Γ[x:¬A] ` c[[x]] : A ⇒ Γ ` εx:¬A.c[[x]] : A [Clavius’ Rule],
(→iε) Γ ` f : A → B → A ⇒ Γ ` εA,B(f) : A [Peirce’s Rule],

whence also, in any “U-context” Γu containing the U-parameters of FVu(A), FVu(A,B), resp.

(E) Γu ` E[[A]] : ¬A → A → A, [the Law of Clavius],
(ε) Γu ` ε[[A,B]] : A → B → A → A, [Peirce’s Law ].

Proof [exercise]. ¤

Remark (The “Law of Clavius” and Curry’s logic DQ). From a provability-only point of view, the so-
called “Law of Clavius” ¬A → A → A (also known as consequentia mirabilis), is an instance of Peirce’s
Law (A → B → A → A, with ⊥ for B). Proof-theoretically, the “Clavian functionals” E[[A]] (so called here
following a post-Rennaissance [Jesuit] tradition, after Christoph Klau SJ [Lat. Clavius]) can be shown to
be equal to ε[[A,⊥]], within the least Boolean equational theory λγ(!) on `[CQ] (cf. [Rezuş 90]: this is,
essentially, λγ&CQ without diagonalization, ∧-types and ∧-proof-primitives). Indeed, for any “U-context”
Γu containing the U-parameters of FVu(A),
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Γu ` ε[[A,⊥]] ≡ λx:(¬A→A).γy:¬A.y(x(λz:A.γz0:>.y(z)))
≡ λx:(¬A→A).εy:¬A.x(λz:A.ω⊥(y(z)))
= λx:(¬A→A).εy:¬A.x(λz:A.y(z))
= λx:(¬A→A).εy:¬A.x(y) ≡ E[[A]] : A → ⊥ → A → A,

by [βγ⊥], [η → λ], resp., whence, in view of [UT], we have Γu ` E[[A]] : ¬A → A → A. In general, one has

Γ[f:(¬A→A)] ` εx:¬A.f(x) = E[[A]](f) : A.

So, we can use the combinator-family E[[A]] in place of the ε-abstractor.

The proof-systems based on at least [⊥,→] and the inferential proof-operators λ`, @` (or
∧
`) and ε (i.e.,

λ-abstraction, “functional” application and “Clavian” abstraction ε, in place of the Boolean γ-abstraction)
record the inferential proof-structure of Curry’s [52,63] logic of “complete refutability” DQ. In fact, the three
proof-operators above suffice only for the [→,¬]-fragment of DQ, with ¬d (“strict negation”, in Curry’s terms)
defined inferentially from [⊥d,→d]. The corresponding “Clavian” proof-theories λε!, λε

∮
0!, etc. defined on

`[CQ] (and/or the extended structures `(∗,&)[CQ]) formalize the equational proof-behavior of (appropriate
fragments of) DQ. On the full DQ, see also [Seldin 89]. For the early history of the “Law of Clavius” [also
known as consequentia mirabilis], see [Clavius 1611] 1.1, pp. 364–365, ad Eucl. IX.12 and 1.2, page 11, ad
Theodos. I.12, [Saccheri 1697,1733] passim, and, possibly, [Cardano 1663] 4, page 579 [= De proportionibus,
Lib. V, Prop. 201].22For the “Law of Peirce”, see [Peirce 1885] (Peirce’s fifth “icon”).

(3) The “Clavian” ε-abstractions. The basic equational properties (in λγ&CQ) of the “Clavian” ε-abstractor
are as follows.

Theorem (Basic ε-properties in λγ&CQ). For all formulas A, B in [⊥,→,(∧,∀)], and any proof-context Γ,

[βε⊥] Γ ` εx:>.e[[x]] = e[[x:=Ω]] : ⊥, if Γ[x:>] ` e[[x]] : ⊥,
[βε→] Γ ` (εx:¬(A→B).f[[x]])(a) = εx:¬B.f[[x:=λz:(A→B).x(z(a))]](a) : B,

if Γ[x:¬(A→B)] ` f[[x]] : A → B, Γ ` a : A,

22The “Clavian functionals” could have been better called “Euclidean proof-operators”, since they occur already in
Elementa, IX.12, This has been noticed first by Christoph Clavius SJ locc. citt.. Clavius acted his entire life as a professor of
mathematics (in the Jesuit’s Collegium Romanum) and was not particularly interested in logic matters (then “dialectic”) as a
stand-alone subject, although, without any doubt, he did always keep an alert eye on the use of specific inferences in Euclid’s
Elements; in retrospect, we could qualify best this intellectual attitude as a “concern with applied logic” perhaps. The somewhat
improper label “Law of Clavius” – implying Clavius as a would-be “discoverer” of this figure of proof – perpetrates later into
logic books via a loose way of speaking used in Jesuit learned media of the XVIth and XVIIth centuries (mathematicians and
theologians). The mirabilis consequentia – first called so likely by Gerolamo Cardano – deserve special attention in the works
of Gerolamo Saccheri SJ, referred to supra: in fact, the Genoan vindicator of Euclid did, indirectly, spend a life-time on it. . .
(For more information, see, e.g., [Vailati 03,03a,04,04a].) Among the moderns, Haskell B. Curry has been the first (± 1950)
to make relevant use of the “Clavian” combinators and the derived ε-operations. Curry’s logic of “strict negation” remained,
practically, a technical curiosity, as a way of playing with negation: the outcome is purely inferential , in contrast with various
notions of negation extracted from “non-classical” semantical considerations (on many-valuedness, truth-value “gaps”, and the
like). The least we can say is that the “strict” negation is non-Brouwerian, although this is not very illuminating. It is also
unclear in what sense should we call it “strict”, as Curry used to think of it. Within the full classical setting, discussed here,
a tempting way of understanding Curry’s idea, would consist of the observation that the inferential part of this logic does
not allow “cancelling” γ’s, exactly in the same sense the λI-calculus of Alonzo Church [41] – and so the inferential part of a
well-known “relevant” logic, i.e., Church’s “theory of weak implication” – does not allow “cancelling” λ’s. Such a hypothesis
would be, however, in conflict with Curry’s “reductionist” view on abstraction: he was convinced of the fact that every kind
of abstraction can be defined explicitly in terms of λ-abstraction and additional functionals. (An immediate consequence of
this tenet is that one cannot correctly explain classical logic, qua proof-behavior. The genuine γ-operators are abstractors, in
general not “reducible” to λ’s. The use of ∆’s to this purpose – i.e., double-negation eliminations; see the exercises following
below or [Rezuş 90] – is circular, of course.) So, the “reductionist” view on abstraction-operators should have rendered Curry
unable to distinguish among “cancelling” λ’s (allowed in his logic) and “non-cancelling” γ’s (not allowed there). As puzzling
as it appears, the logic of “strict negation” [“complete refutability”] is correctly formulated as an inferential logic, even if its
main proponent and his forerunners didn’t have the right tools to think about it. . .
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[βε∧1] Γ ` p1(εx:¬(A∧B).f[[x]]) = εx:¬A.p1(f[[x:=λz:(A∧B).x(p1(z))]]) : A,
if Γ[x:¬(A∧B)] ` f[[x]] : A ∧ B,

[βε∧2] Γ ` p2(εx:¬(A∧B).f[[x]]) = εx:¬B.p2(f[[x:=λz:(A∧B).x(p2(z))]]) : B,
if Γ[x:¬(A∧B)] ` f[[x]] : A ∧ B,

[βε∀] Γ ` (εx:¬(∀u.A[[u]]).f[[x]])[t] = εx:¬A[[u:=t]].f[[x:=λz:(∀u.A[[u]]).x(z[t])]][t] : A[[u:=t]],
if Γ[x:¬(∀u.A[[u]])] ` f[[x]] : ∀u.A[[u]], Γ ‖− t :: U,

[η→ε] Γ ` εx:¬A.a = a : A, if Γ ` a : A, [x /∈ FVλ(a)],
[
∮

0ε] Γ ` εx:¬A.εy:¬A.a[[x,y]]) = εz:¬A.a[[x:=z]][[y:=z]] : A, if Γ[x:¬A][y:¬A] ` a[[x,y]] : A,
[εω] Γ ` εx:¬A.ωA(x(a)) = a : A, if Γ ` a : A, [x /∈ FVλ(a)].

Proof . Easy calculations [exercise]. E.g., [βε→], follows from [βγ →], and [β → λ]. ¤

Remark (ε-congruence). In view of [ξ → γ] and [ν →], one has also immediately, for all formulas A in
[⊥,→,(∧,∀)], and any proof-context Γ,

[ξ→ε] Γ ` εx:¬A.a1[[x]] = εx:¬A.e2[[x]] [: A], if Γ[x:¬A] ` a1[[x]] = a2[[x]] : A

Without [εω], the ε-properties above, yield purely “Clavian” sub-theories λε(π)!, λε
∮

0(π)! of λγ(&)CQ
matching the [⊥d,→d,(∧d),∀d]-fragment(s) of DQ. The minimal “Clavian” theory λε! has no trace of diag-
onalization, while λε

∮
0(π)! has [

∮
0ε]. No analogue of [

∮
γ] seems to be available with ε alone.

Exercises (“Clavian” logic: the proof-theory of DQ).

(1) Conversely, in `[CQ], the family E[[A,B]] (‖− A, B :: H), can be expressed with λ-abstraction, “func-
tional” application and the ε-operator. Show that, for all formulas A, B in [⊥,→,(∧,∨,∀,∃)], and any
proof-context Γ,

[βE⊥] Γ ` E[[⊥]](f) = f(Ω) : ⊥, if Γ ` f : > → ⊥ [≡df (⊥ → ⊥ → ⊥)],
[βE→] Γ ` E[[A→B]](f)(a) = E[[B]](λx:¬B.f(cA[[x]])(a)) : B, if Γ ` f : ¬(A→B)→(A→B), Γ ` a : A,

where cA[[x]] ≡ λz:(A→B).x(z(a)),
[ηE] Γ ` E[[A]](λx:¬A.a) = a, if Γ ` a : A [x /∈ FVλ(a)].

(2) “Clavian functionals” (Christoph Klau [Clavius], 1574). Derive the following E-equations in λγ&CQ,
for all formulas A in [⊥,→,(∧,∀)], where Γu contains the “U-parameters” of FVu(A):

[extE] Γu ` E[[A]] ◦ K∼[[A]] = I[[A]],
[E ∆] Γu ` E[[A]] = ∆[[A]] ◦ §[[A]],
[∆ E] Γu ` ∆[[A]] = E[[A]] ◦ #[[A]],

where ◦ stands, in each case, for the appropriate stratified B-combinator (composition), and

K∼[[A]] := K[[A,¬A]] [≡ λx:A.λy.¬A.x],
∆[[A]] [≡ λx:¬¬A.γy:¬A.x(y)], as ever, and
#[[A]] := †[[¬A,A]] [≡ λx:¬¬A.λy:¬A.ωA(x(y))],
§[[A]] := S?[[A,⊥]] [≡ λx:(¬A→A).λy:(¬A).y(x(y))],

with Γu ` #[[A]] : ¬¬A → ¬A → A and Γu ` §[[A]] : ¬A → A → ¬¬A.

Show that diagonalization [
∮

γ] is not actually needed.

(3) Describe, on the pattern of the present notes, the proof-theory of the logic of “complete refutability”
DQ as a typed λ-calculus, λDQ, say. (Hint . Cf. [Curry 52,63], [Seldin 89] for provability matters, and
recall the previous extended exercises on the “negative” DQ-proof-operators.)

(4) Deferred inferential proof-operators. The γ-abstractions can be analyzed in terms of ω-operators, required
in HQ, and “Clavian” ε-abstractions [= applications of the Rule of Clavius], required in DQ. Indeed, it is
easy to see that the stratification rules (→iε) and (→iω) are tantamount (→iγ): using the former two rules,
in place of (→iγ), one could have simulated the stratification-behavior of the γ-abstractor by setting, e.g.,
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γ◦x:¬A.e[[x]] := εx:¬A.ω[[A]](e[[x]]) [≡df εx:¬A.ωA(e[[x]])].

One can generalize this as follows.

Definition (Deferred inferential proof-operators).

For all formulas A in [⊥,→,(∧,∨,∀,∃)],
γ◦x:¬A.e[[x]] [≡ γ◦([x:¬A].e[[x]]:⊥):A] := εx:¬A.ωA(e[[x]]),
ω◦A(e) [≡ ω◦(e:⊥):A] := γ◦x:¬A.e [x /∈ FVλ(e)],
ε◦x:¬A.a[[x]] [≡ ε◦([x:¬A].a[[x]]:A):A] := γ◦x:¬A.x(a[[x]]).

In general, set, for n ≥ 0, and all formulas A in [⊥,→,(∧,∨,∀,∃)],
γ[0]x:¬A.e[[x]] [≡ γ[0]([x:¬A].e[[x]]:⊥):A] := γx:¬A.e[[x]],
γ[n+1]x:¬A.e[[x]] [≡ γ[n+1]([x:¬A].e[[x]]:⊥):A] := ε[n]x:¬A.ω[n]

A (e[[x]]), where
ω

[n]
A (e) [≡ ω

[n]
A (e:⊥):A] := γ[n]x:¬A.e, [x /∈ FVλ(e)],

ε[n]x:¬A.a[[x]] [≡ ε[n]([x:¬A].a[[x]]:A):A] := γ[n]x:¬A.x(a[[x]]).

Lemma (Deferred inferential proof-operators: stratification). For all formulas A in [⊥,→,(∧,∨,∀,∃)], and
any proof-context Γ,

(→iγ◦) Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γ◦x:¬A.e[[x]] : A,
(→iω◦) Γ ` e : ⊥ ⇒ Γ ` ω◦A(e) : A,
(→iε◦) Γ[x:¬A] ` a[[x]] : A ⇒ Γ ` ε◦x:¬A.a[[x]] : A,
and, in general, for all n ≥ 0,

(→iγ[n]) Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γ[n]x:¬A.e[[x]] : A,
(→iω[n]) Γ ` e : ⊥ ⇒ Γ ` ω

[n]
A (e) : A,

(→iε[n]) Γ[x:¬A] ` a[[x]] : A ⇒ Γ ` ε[n]x:¬A.a[[x]] : A.

Proof . (→iγ◦): use (→iω) and (→iε). (→iω◦), (→iε◦): equally trivial. (→iγ[n]): One can show, in fact,
that, for all n ≥ 0,

(→iγ[n+1]) Γ ` γ[n+1]x:¬A.e[[x]] ≡ ε[n]x:¬A.ω[n]
A (e[[x]]) ≡ γ[n]x:¬A.x(γ[n]y:¬A.e[[x]]) : A

if Γ[x:¬A] ` e[[x]] : ⊥ [y /∈ FVλ(c[[x]])],

whence (→iγ[n]) follows by induction on n. (→iω[n]), (→iε[n]): These are special cases of (→iγ[n]). ¤
Within λγ&CQ, the “simply deferred” γ◦-abstractor γ◦x:¬A.e[[x]] has the same equational behavior as the
primitive γ-abstractor.

Lemma (Simply deferred γ-abstraction: equational behavior). For all A in [⊥,→,(∧,∀)], one has, in λγ&CQ,

[γ◦γ] Γ[x:¬A] ` e[[x]] : ⊥ ⇒ Γ ` γ◦x:¬A.e[[x]] = γx:¬A.e[[x]] : A,

Proof . Obvious (use [
∮

0γ]). ¤
Analogously, “deferring once” ω, ε yields proof-operators ω◦, ε◦ resp. with the same equational properties.

Corollary (Simply deferred negative inferential proof-operators). For all A in [⊥,→,(∧,∀)], and any proof-
context Γ, one has, in λγ&CQ,

[ω◦ω] Γ ` e : ⊥ ⇒ Γ ` ω◦A(e) = ωA(e) : A,
[ε◦ε] Γ[x:¬A] ` a[[x]] : A ⇒ Γ ` ε◦x:¬A.a[[x]] = εx:¬A.a[[x]] : A.

Proof . Easy [exercise] (use [
∮

0γ]). ¤
We have already noticed the fact that the deferring operation can be generalized in a straightforward way
such as to obtain a γ[n]-ε[n]-ω[n]-sequence (n ≥ 0). The diagonalization rule [

∮
γ] of λγ(&)CQ – actually, just

the weak diagonalization [
∮

0γ] – induces a reflection property on the equational behavior of γ-proof-operators,
insuring the fact that the γ[n]-ε[n]-ω[n]-sequence (n ≥ 0) behaves, in λγ(&)CQ, like the γ-ε-ω-triple.
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Theorem (Deferred negative proof-operators: equational behavior). In general, for all n ≥ 0, one has, in
λγ(&)CQ, for all formulas A in [⊥,→,(∧,∀)], and any proof-context Γ,

[γ[n]γ] Γ ` γ[n]x:¬A.e[[x]] = γx:¬A.e[[x]]: A, if Γ[x:¬A] ` e[[x]] : ⊥,
[ω[n]ω] Γ ` ω

[n]
A (e) = ωA(e) : A, if Γ ` e : ⊥,

[ε[n]ε] Γ ` ε[n]x:¬A.a[[x]] = εx:¬A.a[[x]] : A, if Γ[x:¬A] ` a[[x]] : A.
Proof . Routine [exercise]. (Hint . One needs [

∮
0γ].) ¤

We are now ready to go into the proper (equational) behavior of ω (and so into the idiosyncrasies of the
Heyting proofs).

Boolean and Heyting ω-rules in λγ&CQ. As mentioned earlier, in contrast with the first-order fragment
of Martin-Löf’s type theory and the Minimalkalkül , Heyting’s first-order proof-calculus has a number of
ad hoc-looking rules (the so-called “⊥-rules”, here: ω-rules or ex-falso-rules), describing the specific equa-
tional/reduction properties of the ω-operator. These rules characterize the behavior of the ω-proof-terms
of the form ωC(e:⊥) [for C := ⊥, (A→B), (A∧B), (A∨B), (∀u.A[[u]]) or (∃u.A[[u]])], occurring within the
scope of a selector (or within the scope of ω [HQ thinks of ω as being a selector]). (For “natural deduction”
variants, see [Prawitz 65], [Troelstra 73], [Troelstra & van Dalen 88].)
Since, in a classical proof-setting, the ω-operator is a specific instance of γ-abstraction, one might suspect
that the ω-rules are available in λγ&CQ. This is, indeed, the case. In fact, in λγ&CQ, one has slightly more
general ω-rules: specifically, this concerns the equational behavior of the ω-terms relative to the Boolean
[∨,∃]-proof-operators.
Theorem (The Boolean ω-rules in λγ&CQ). For all A, B, C in [⊥,→,∧,∀], and any proof-context Γ,

[βω⊥] ≡ [η⊥ω]h Γ ` ω⊥(f) = f [: ⊥], if Γ ` f : ⊥,
[βω→] Γ ` (ωF(f))(a) = ωB(f) [: B], if Γ ` f : ⊥, Γ ` a : A, [F ≡ A → B],
[βω∧1] Γ ` p1(ωF(f)) = ωA(f) [: A], if Γ ` f : ⊥, [F ≡ A ∧ B],
[βω∧2] Γ ` p2(ωF(f)) = ωB(f) [: B], if Γ ` f : ⊥, [F ≡ A ∧ B],
[βω∨] Γ ` ∨

\(z:¬C).ωF(f) ♦ [λx:A.e1[[x,z]], λy:B.e2[[y,z]]] = ωC(f) [: C],
if Γ ` f : ⊥, Γ[x:A][z:¬C] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬C] ` e2[[y,z]] : ⊥, [F ≡ A ∨ B],

[βω∀] Γ ` (ωF(f))[t] = ωG(f) [: A[[u:=t]]], if Γ ` f : ⊥, [Γ ‖− t :: U], [F ≡ ∀u.A[[u]]], [G ≡ A[[u:=t]]],
[βω∃] Γ ` ∨

∪(z:¬C).ωF(f) ♦ [!u.λx:A[[u]].e[[u,x,z]]] = ωC(f) [: C],
if Γ ` f : ⊥, Γ[u:U][x:A[[u]]][z:¬C] ` e[[u,x,z]] : ⊥, [u /∈ FVu(C)], [F ≡ ∃u.A[[u]]].

Proof . [βω⊥] (the alternative label [η⊥ω]h is explained below): This follows from [βγ⊥], since,
Γ ` f : ⊥ ⇒ Γ ` ω⊥(f) ≡ γx:>.f = f[[x:=Ω]] ≡ f, whenever x /∈ FVλ(f).

[βω→]: [exercise] (use [βγ →]).
[βω∧1]: If Γ ` f : ⊥ and F ≡ [A ∧ B], one has, by [βγ∧1],

Γ ` p1(ωF(f):A∧B) ≡ p1(γz:¬(A∧B).f) = γz:¬A.f ≡ ωA(f) : A, where z /∈ FVλ(f).
[βω∧2]: Analogously, using [βγ∧2] instead.
[βω∨]: Where F ≡ [A ∨ B], if Γ ` f : ⊥, Γ[x:A][z:¬C] ` e1[[x,z]] : ⊥, and Γ[y:B][z:¬C] ` e2[[y,z]] : ⊥, one has

Γ ` ∨
\(z:¬C).ωF(f) ♦ [λx:A.e1,λy:B.e2] = γz:¬C.f ≡ ωC(f) : C, whenever z /∈ FVλ(f),

by [hβγ →], [βγ⊥].
[βω∀]: [exercise] (one needs [βγ∀]).
[βω∃]: If F ≡ ∃u.A[[u]], Γ ` f : ⊥, and Γ[u:U][x:A[[u]]][z:¬C] ` e[[u,x,z]] : ⊥, [u /∈ FVu(C)], one has

Γ ` ∨
∪(z:¬C).ωF(f) ♦ [!u.λx:A[[u]]].e) = γz:¬C.f ≡ ωC(f) : C, where z, z0 /∈ FVλ(f),

by [hβγ →], [βγ⊥]. ¤



50

Remark (ω-congruence in λγ&CQ). In view of [ξ → γ], one has also immediately, for all formulas A in
[⊥,→,(∧,∨,∀,∃)], and any proof-context Γ,

[ξ→ω] ≡ [ν →ω] Γ ` e1 = e2 : ⊥ ⇒ Γ ` ωA(e1) = ωA(e2) [: A].

Remark (The Boolean ω-rules: λγ&CQ-derivability conditions). Set, for convenience,
[βω]+ := { [βω⊥], [βω→], [βω∧1], [βω∧2], [βω∀] }, and
[βω] := [βω]+ ∪ { [βω∨], [βω∃] }.

From the proof of the previous theorem, it follows that [
∮

γ], and [η∧], [η∀] are not needed in the derivation
of [βω] in λγ&CQ.

Remark (The [“negative”] ω-rules [βω∨], [βω∃]). The (“negative”) ω-rules [βω∨], [βω∃], resp. are, in fact,
special cases of more general (genuinely Boolean) rules, derivable in λγ&CQ, viz. the “main branch” [

∨
\γ]-,

[
∨
∪γ]-diagonalizations [hβγ∨-β∨], [hβγ∃-β∃], obtained earlier. To get the “negative” ω-rules [βω∨], [βω∃],

use the “cut” < $K > in order to simplify premisses Γ[x:¬A][y:¬B] ` e : ⊥, and Γ[x:¬A[[t]]] ` e : ⊥, whenever
x, y /∈ FVλ(e). Alternatively, [βω∨] follows from [hβγ∨], and [β∨], while [βω∃] follows from [hβγ∃], and [β∃]
[exercise].

In particular, for F := ⊥, (A∨B), (∃u.A[[u]]), one has, as special cases, the specific Heyting ω-rules:
Corollary (The Heyting “ω-diagonal” rule). For all A in [⊥,→,(∧,∨,∀,∃)], and any proof-context Γ,

[βω⊥]h Γ ` ωA(ω⊥(f)) = ωA(f) [: A] if Γ ` f : ⊥.
Proof . [βω⊥]h follows from [βω⊥] ≡ [η⊥ω]h. ¤
Corollary (The Heyting “main branch” [tω][qω]-rules in λγ&CQ). For all A, B, C in [⊥,→,∧,∨,∀,∃], and
any proof-context Γ,

(1) [βω∨]h ≡ [hβω∨-β∨]h:
[βω∨]h Γ ` t(ωF(f),[x:A].c1[[x]],[y:B].c2[[y]]) = ωC(f) [: C],

if Γ ` f : ⊥, Γ[x:A] ` c1[[x]] : C, Γ[y:B] ` c2[[y]] : C, [F ≡ A ∨ B],

(2) [βω∃]h ≡ [hβω∃-β∃]h:
[βω∃]h Γ ` q(ωF(f),[u:U][x:A[[u]]].c[[u,x]]:C) = ωC(f) [: C],

if Γ ` f : ⊥, Γ[u:U][x:A[[u]]] ` c[[u,x]] : C, [u /∈ FVu(C)], [F ≡ ∃v.A[[v]]].
Proof . [βω∨]h [βω∃]h are special cases of [βω∨], [βω∃],resp. That is, ultimately, modulo the “cut” < $K >,
[hβω∨-β∨]h is a special case of [hβγ∨-β∨], while [hβω∃-β∃]h is a special case of [hβγ∃-β∃] (cf. above the
“main branch” [

∨
\γ]- and [

∨
∪γ]-rules of λγ&CQ). ¤

Remark (Boolean and Heyting “intensional” ω-rules in λγCQ). With ⊗ ≡ ⊗u, ⊕ ≡ ⊕u, say, and intensional
algebraic [⊗,⊕]-proof-operators defined as earlier, one has also, in λγCQ, for all A, B, C in [⊥,→,(∧,∀)], and
any proof-context Γ,

[βω⊗1] Γ ` π1(ωF(f):A⊗B) = ωA(f) : A, if Γ ` f : ⊥, [F ≡ A ⊗ B],
[βω⊗2] Γ ` π2(ωF(f):A⊗B) = ωB(f) : B, if Γ ` f : ⊥, [F ≡ A ⊗ B],
[βω⊕] Γ ` ∨

⊗(z:¬C).ωF(f) ♦ [λx:A.e1,λy:B.e2] = ωC(f) : C
if Γ ` f : ⊥, Γ[x:A][z:¬C] ` e1[[x,z]] : ⊥, Γ[y:B][z:¬C] ` e2[[y,z]] : ⊥, [F ≡ A ⊕ B],

and, in particular, defining [as above],
t⊗(f,[x:A].c1[[x]],[y:B].c2[[y]]) ≡df

∨
⊗(z:¬C).f ♦ [λx:A.z(c1[[x]]),λy:B.z(c2[[y]])],

[z /∈ FVλ(c1[[x]],c2[[y]])], one has also the special case:
[βω⊕]h Γ ` t⊗(ωF(f),[x:A].c1[[x]],[y:B].c2[[y]]) = ωC(f) : C,

if Γ ` f : ⊥, Γ[x:A] ` c1[[x]] : C, Γ[y:B] ` c2[[y]] : C, [F ≡ A ⊕ B].
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Proof . [βω⊗1], [βω⊗2], [βω⊕]: Use [β → λ], [βγ⊥], [βγ →]. [βω⊕]h is a special case of [βω⊕]. ¤
Remark (The Heyting ω-rules: λγ&CQ-derivability conditions).
(1) In order to keep track of λγ&CQ-derivability conditions, set:

(a) [βω]h(`∗[CQ]) := { [βω⊥]h, [βω→], [βω∧1], [βω∧2], [βω∨]h, [βω∀], [βω∃]h }, in the primitive
`∗[CQ]-syntax, resp., mutatis mutandis,
[βω]h(`&[CQ]) := [βω]h, in the `&[CQ]-syntax, and

(b) [βω]h(`[CQ]) := { [βω⊥]h, [βω→], [βω⊗1], [βω⊗2], [βω⊕]h, [βω∀], [βω∃]h }, in the `[CQ]-syntax.
In the above, only the rules [βω∨], and [βω∃] (as well as the “intensional” analogue [βω⊕] of [βω∨]) are
genuinely Boolean. On the other hand, [βω⊥] can be seen as a “⊥-extensionality”-property, [η⊥ω]h say. It
obtains for Heyting’s logic, too. The remaining βω-rules [βω]h(`(∗,&)[CQ]) are images, in λγ&CQ, of the
Heyting ω-rules.
(2) The rules [βω]h(`&[CQ]) (and so [βω]h(`∗[CQ])] are derivable in a sub-theory (λγπβ !β , say) of λγ&CQ,
without diagonalization and [∧,∀]-“extensionality” conditions. Analogously, the rules [βω]h(`[CQ]) are
derivable in a sub-theory (λγ!β , say) of λγCQ, without diagonalization and [∀]-“extensionality”.
(3) Concluding, the least first-order classical theory λγ! [i.e., λγCQ without diagonalization] suffices in order
to derive the Boolean analogues of the Heyting ω-rules. Moreover, the Heyting ω-rules hold (classically) for
the standard notion of proof-reduction of λγ! [exercise]. (Hint : Cf. [Rezuş 90].)
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Chapter VII

The Heyting proof-calculus

The Heyting “commuting conversions” in λγ&CQ. Like the “[
∨

\,
∨
∪]-diagonal” rules of λγ&CQ, the fol-

lowing facts are more difficult to state than to prove. They say, in essence, that the so-called ∨- and ∃-
“commuting” conversion rules of the Heyting first-order proof-calculus are available equationally in λγ&CQ.
(See, e.g., [Prawitz 65], [Troelstra 73], [Troelstra & van Dalen 88] 2, for “natural deduction” variants.) We
shall give sufficient information in order to restore full derivations: once we know what is to be proved, these
rely on routine calculations in λγ&CQ.23

(0) For the record, catalogued first are the special instances of
∨

\ and
∨
∪, matching the γ-to-ω type of

instantiation. Indeed, as in the case of the γ-abstractions, there are instances of the Boolean [
∨

\,
∨
∪]-

selectors that are “intuitionistically correct”, so to speak. Such instances are definable in terms of the
corresponding MQ- (resp. HQ-) primitives t, q, resp., and the HQ-operator ω. In λγ&CQ this situation
can be expressed trivially by specializing [β

∨
\⊥], [β

∨
∪⊥], resp., modulo β-conversion [β → λ].

Lemma (HQ-admissible instances of the [
∨

\-,
∨
∪]-selectors).

[βt⊥] Γ ` ωC(t(h,[x:A].e1[[x]]:⊥,[y:B].e2[[y]]:⊥) =
∨

\(z:¬C).h ♦ [λx:A.e1[[x]], λy:B.e2[[y]]] [: C],
if Γ ` h : A ∨ B, Γ[x:A] ` e1[[x]] : ⊥, Γ[y:B] ` e2[[y]] : ⊥,
provided z /∈ FVλ(e1[[x]],e2[[y]]), [x, y, z /∈ FVλ(h)],

[βq⊥] Γ ` ωC(q(h,[u:U][x:A[[u]]].e[[u,x]]:⊥)) =
∨
∪(z:¬C).h ♦ [!u.λx:A.e[[u,x]]] [: C],

if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A] ` e[[u,x]] : ⊥,
provided z /∈ FVλ(e[[u,x]]), [x, y, z /∈ FVλ(h), etc.], [u /∈ FVu(C)],

Proof . [βt⊥]: Use [β → λ], and [β
∨

\⊥]. [βq⊥]: Analogously, by [β → λ], and [β
∨
∪⊥]. ¤

We can go now into the proper HQ-“commuting” rules. As expected, these must be special cases of con-
versions described in λγ&CQ, as “[

∨
\,
∨
∪]-diagonal” situations. We can show, in fact, that λγ&CQ is

equationally complete with respect to the Heyting “commuting conversions”. This is as it should be.

(1) The simplest Heyting ∨- and ∃-“commuting” conversions are those relative to ω-terms. [Recall that the
ω-operators count as selectors in HQ.] These are instances of appropriate derived λγ&CQ-rules.

Corollary (The Heyting [∨ω,∃ω]-commuting conversions in λγ&CQ).

(1) [β∨ω]h ≡ [β
∨

\⊥-
∮ ∨

\ωω]h ≡ [β∨⊥]h:

[β∨ω]h Γ ` ωC(t(h,[x:A].a[[x]]:⊥,[y:B].b[[y]]:⊥)) = t(h,[x:A].ωC(a[[x]]):C,[y:B].ωC(b[[y]]):C) : C,

23Were we not interested in isolating the general Boolean equational proof-patterns of the Heyting (conversion-) rules
first, the latter could have been available by applying blindly the definitions and by computing resulting proof-term expansions,
a good job for a machine, say. [Actually, a λγ-system can be easily implemented as a λ-calculus “reduction machine”, endowed
with a relatively simple type-checking facility.] Of course, the main point of the present notes is that of showing that there is
some structure in the game; viz. that the genuine proof-conversions of the Heyting calculus are, indeed, special cases – and
oft just instances – of general “proof-isomorphisms” (matching, e.g., various β-“evaluation” patters, extensionality principles,
“diagonal situations”, etc.) that obtain in [extensional ] λγ-calculi. As we show next, this is – technically – unproblematic. In the
epistemic order of things, the difficulty appears in the attempt to qualify the specifics of the Heyting conversion-rules, within
the classical proof-realm, or yet, more generally, while looking for a would-be criterion of construction behind the Heyting
calculus. The outcome of this section would, apparently, leave the things in disorder, so that the Heyting proof-calculus looks,
prima facie, very composite on the equational level. [Some authors have even based their attack against “intuitionistic logic”
on this first impression, pointing out to things like, “the ad hoc character of the rules”.] The fact is that exactly this choice
of an equational proof-system is forced upon, by Brouwer’s genuine views on difference and negation, views that are counter -
traditional, so to speak. The attempt to settle down this type of problem makes appeal to a different conceptual archaeology,
however, and is discussed elsewhere.
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if Γ ` h : A ∨ B, Γ[x:A] ` a[[x]] : ⊥, Γ[y:B] ` b[[y]] : ⊥,

(2) [β∃ω]h ≡ [β
∨
∪⊥-

∮ ∨
∪ω]h ≡ [β∃⊥]h:

[β∃ω]h Γ ` ωC(q(h,[u:U][x:A].c[[u,x]]:⊥)) = q(h,[u:U][x:A].ωC(c[[u,x]]):C) : C,
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` c[[u,x]] : ⊥.

Proof . These are special cases of [β∨γ] ≡ [β
∨

\⊥-
∮ ∨

\γγ] and [β∃γ] ≡ [β
∨
∪⊥-

∮ ∨
∪γ]. (The latter have been

obtained as λγ&CQ-consequences of [
∮ ∨

\γγ] and [
∮ ∨

∪γ], resp., modulo [β
∨

\⊥] and [β
∨
∪⊥].) ¤

(2) Modulo applications of [β → λ]-conversion (i.e., the usual β-rule of the ordinary typed λ-calculus), the
following are instances of the positive [β

∨
\]- resp. [β

∨
∪]-rules of λγ&CQ.

Corollary (Positive t(∨)-commuting conversions in λγ&CQ).

(1) [βt→]h ≡ [β∨→]h:
Γ ` t(h,[x:A].e1[[x]]:(F→G),[y:B].e2[[y]]:(F→G))(f) = t(h,[x:A].e1[[x]](f):G,[y:B].e2[[y]](f):G) [: G],
if Γ ` h : A ∨ B, Γ ` f : F, Γ[x:A] ` e1[[x]] : F → G, Γ[y:B] ` e2[[y]] : F → G,

(2) [βt∧1]h ≡ [β∨∧1]h:
Γ ` p1(t(h,[x:A].e1[[x]]:(F∧G),[y:B].e2[[y]]:(F∧G))) = t(h,[x:A].p1(e1[[x]]):F,[y:B].p1(e2[[y]]):F) [: F],
if Γ ` h : A ∨ B, Γ[x:A] ` e1[[x]] : F ∧ G, Γ[y:B] ` e2[[y]] : F ∧ G,

(3) [βt∧2]h ≡ [β∨∧2]h:
Γ ` p2(t(h,[x:A].e1[[x]]:(F∧G),[y:B].e2[[y]]:(F∧G))) = t(h,[x:A].p2(e1[[x]]):G,[y:B].p2(e2[[y]]):G) [: G],
if Γ ` h : A ∨ B, Γ[x:A] ` e1[[x]] : F ∧ G, Γ[y:B] ` e2[[y]] : F ∧ G,

(4) [βt∀]h ≡ [β∨∀]h: where t is free for u in [F ≡] F[[u]], and F[[t]] ≡ F[[u:=t]],
Γ ` (t(h,[x:A].e1[[x]]:∀u.F,[y:B].e2[[y]]:∀u.F))[t] = t(h,[x:A].e1[[x]][t]:F[[t]],[y:B].e2[[x]][t]:F[[t]]) [: F[[t]]],
if Γ ` h : A ∨ B, Γ ‖− t :: U, Γ[x:A] ` e1[[x]] : ∀u.F[[u]], Γ[y:B] ` e2[[y]] : ∀u.F[[u]].

Proof . [Note that, in each case, x, y /∈ FVλ(h).] [βt→]h: Modulo [β → λ]-conversion, this is a special case
of [β

∨
\→]. [βt∧1]h, [βt∧2]h: Analogously, using [β

∨
\∧1] resp. [β

∨
\∧2] and [β → λ]). [βt∀]h: By [β

∨
\∀]

and [β → λ]. The details can be safely left as exercises to the reader. ¤
Corollary (Positive q(∃)-commuting conversions in λγ&CQ).

(1) [βq→]h ≡ [β∃→]h:
Γ ` (q(h ♦ [u:U][x:A[[u]]].e[[u,x]]:(F→G))(f) = q(h,[u:U][x:A[[u]]].e[[u,x]](f):G]) [: G],
if Γ ` f : F, Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` e[[u,x]] : F → G, provided u /∈ FVu(F,G),

(2) [βq∧1]h ≡ [β∃∧1]h:
Γ ` p1(q(h,[u:U][x:A[[u]]].e[[u,x]]:(F∧G))) = q(h,[u:U][x:A[[u]]].p1(e[[u,x]]):F) [: F],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` e[[u,x]] : F ∧ G, provided u /∈ FVu(F,G),

(3) [βq∧2]h ≡ [β∃∧2]h:
Γ ` p2(q(h,[u:U][x:A[[u]]].e[[u,x]]:(F∧G))) = q(h,[u:U][x:A[[u]]].p2(e[[u,x]]):G) [: G],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` e[[u,x]] : F ∧ G, provided u /∈ FVu(F,G),

(4) [βq∀]h ≡ [β∃∀]h: where t is free for v in F[[v]], and F[[t]] ≡ F[[v:=t]],
Γ ` q(h,[u:U][x:A[[u]]].e[[u,x]]:(∀v.F[[v]]))[t] = q(h,[u:U][x:A[[u]]].e[[u,x]][t]:F[[t]]) [: F[[t]]]
if Γ ‖− t :: U, Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` e[[u,x]] : ∀v.F[[v]], provided u /∈ FVu(∀v.F[[v]]).

Proof . [One has, in each case, x /∈ FVλ(h), while, in (1), x /∈ FVλ(f)], too.] Use [β
∨
∪→], [β

∨
∪∧1], [β

∨
∪∧2],

[β
∨
∪∀] resp., and [β → λ]. ¤

(3) Finally, the following rules are instances of the appropriate [
∮ ∨

\

∨
\]-, [

∮ ∨
∪
∨

\]-, [
∮ ∨

\

∨
∪]- and [

∮ ∨
∪
∨
∪]-

“diagonal” rules of λγ&CQ.
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Corollary (Negative t(∨)-commuting conversions in λγ&CQ).
(1) [

∮tt:∨∨]h ≡ [β∨∨]h:
Γ ` t(c ♦ [x0:F].e1[[x0]]:E,[y0:G].e2[[y0]]:E) = t(h ♦ [x:A].c1[[x]]:E,[y:B].c2[[y]]:E) [: E ]
if Γ ` h : A ∨ B, Γ[x:A] ` a[[x]] : F ∨ G, Γ[y:B] ` b[[y]] : F ∨ G,
and Γ[x0:F] ` e1[[x0]] : E, Γ[y0:G] ` e2[[y0]] : E,

where [x, y /∈ FVλ(h, e1[[x]],e2[[y]])], [x0, y0 /∈ FVλ(h,a[[x]],b[[y]])],
c ≡ t(h,[x:A].a[[x]]:(F∨G),[y:B].b[[y]]:(F ∨ G)),
c1[[x]] ≡ t(a[[x]],[x0:F].e1[[x0]]:E,[y0:G].e2[[y0]]:E), and c2[[y]] ≡ t(b[[y]],[x0:F].e1[[x0]]:E,[y0:G].e2[[y0]]:E),

(2) [
∮qt:∃∃]h ≡ [β∨∃]h:
Γ ` q(c,[u:U][x0:F].e[[u,x0]]:E) = t(h,[x:A].e1[[x]]:E,[y:B].e2[[y]]:E) [: E ],
if Γ ` h : A ∨ B, Γ[x:A] ` a[[x]] : ∃u.F[[u]], Γ[y:B] ` b[[y]] : ∃u.F[[u]], Γ[u:U][x0:F[[u]]] ` e[[u,x0]] : E,

where [x0 /∈ FVλ(h,a[[x]],b[[y]])], [x, y /∈ FVλ(h,e[[u,x0]])], provided u /∈ FVu(E),
c ≡ t(h,[x:A].a[[x]]:(∃u.F[[u]]),[y:B].b[[y]]:(∃u.F[[u]])),
e1[[x]] ≡ q(a[[x]],[u:U][x0:F[[u]]].e[[u,x0]]:E), and e2[[y]] ≡ q(b[[y]],[u:U][x0:F[[u]]].e[[u,x0]]:E).

Proof . [
∮tt:∨∨]h: This is an instance of [

∮ ∨
\

∨
\:∨∨]. Here, ([β → λ] must be used in order to eliminate

p-terms of the form Ω(d) ≡ (λz:⊥.z)(d). [
∮qt:∃∃]h: Analogously [exercise], using [

∮ ∨
∪
∨

\:∃∃] and [β → λ].
¤
Corollary (Negative q(∃)-commuting conversions in λγ&CQ).
(1) [

∮tq:∨]h ≡ [β∃∨]h:
Γ ` t(c,[x0:F].e1[[x0]]:E,[y0:G].e2[[y0]]:E) = q(h,[u:U][x:A[[u]]].e[[u,x]]:E) [: E],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` a[[u,x]] : F ∨ G, Γ[x0:F] ` e1[[x0]] : E, Γ[y0:G] ` e2[[y0]] : E,

where [x0, z0 /∈ FVλ(h,a[[u,x]])], [x /∈ FVλ(h,e1[[x0]],e2[[y0]])], [u /∈ FVu(E,e1[[x0]],e2[[y0]])],
c ≡ q(h,[u:U][x:A[[u]]].a[[u,x]]:(F∨G)), and e[[u,x]] ≡ t(a[[u,x]],[x0:F].e1[[x0]]:E,[y0:G].e2[[y0]]:E),
provided u /∈ FVu(F,G),

(2) [
∮qq:∃]h ≡ [β∃∃]h:
Γ ` q(c,[v:U][x0:F[[v]]].e[[v,x0]]:E) = q(h,[u:U][x:A[[u]]].b[[u,x]]:E) [: E],
if Γ ` h : ∃u.A[[u]], Γ[u:U][x:A[[u]]] ` a[[u,x]] : ∃v.F[[v]], Γ[v:U][x0:F[[v]]] ` e[[v,x0]] : E,

where [x0 /∈ FVλ(h,a[[u,x]])], [x /∈ FVλ(h,e[[u,x0]])], [u /∈ FVu(e[[v,x0]])], [v /∈ FVu(a[[u,x]])],
c ≡ q(h,[u:U][x:A[[u]]].a[[u,x]]:(∃v.F[[v]])), b[[u,x]] ≡ q(a[[u,x]],[v:U][x0:F[[v]]].e[[v,x0]]:E),
provided u /∈ FVu(∃v.F[[v]]) and v /∈ FVu(E).

Proof . Equally easy [exercise] (for [
∮tq:∨]h: use [

∮ ∨
\

∨
∪:∨] and [β → λ]; for [

∮qq:∃]h: use [
∮ ∨

∪
∨
∪:∃],

[β → λ]; the β-rule eliminates p-terms f[[u,x]](d), with Γ[u:U][x:A[[u]]] ` f[[u,x]] ≡df Ω : >). ¤
Remark (Intensional variants of the [∨,∃]-commuting HQ-rules). It is relatively easy (although rather
tedious) to establish effectively the fact that “intensional” analogues of the Heyting [∨,∃]-commuting rules
are already available in λγCQ (the ∧-free subsystem of λγ&CQ, defined on `[CQ], although not in its
diagonalization-free fragment λγ!) in terms of Boolean intensional algebraic proof-operators associated to
any one of the [⊗,⊕]-pairs defined previously [exercise]. (Globally, this follows also from the remark that [η∧]
and [η∀] were not needed in the derivation of the more general Boolean analogues.) Notably, if we leave out
[
∮

γ] (i.e., if we work in the diagonalization-free subsystem λγ! of λγCQ), only “cross-diagonal situations” are
lost. For the HQ-case, of concern here, this means that we loose just the negative [t(∨),q(∃)]-conversions,
viz. [β∨∨]h, [β∨∃]h, [β∃∨]h, [β∃∃]h.

The Heyting proof-calculus λHQ. We can finally isolate the proof-theory of Heyting’s first-order logic HQ as
a proper sub-theory of λγ&CQ. As is well-known, at a provability-level, one has HQ ⊂ CQ (proper inclusion



BEYOND BHK 55

for the corresponding sets of provable formulas). In fact, as in the case of Johansson’s Minimalkalkül, the
Heyting logic HQ can be viewed as a proper fragment of CQ, at a proof-theoretic level, modulo an appropriate
definitional embedding .
Relative to the [⊥,→,∧,∨,∀,∃] type-structure, the proof-syntax of the first-order Heyting logic HQ, the
stratification `[HQ] of the Heyting proof-terms, and the equational system of the Heyting first-order proof-
calculus can be described along a pattern matching, in the obvious way, the previous criteria used to display
the Boolean and “minimal” proof-syntax. Summing up, the proof-theory of Heyting’s first-order logic HQ
[“the Heyting proof-calculus”] consists of the following cocktail:
Definition (`[HQ] and λHQ).
(1) Heyting proof-operators: as for `[MQ], with, moreover,

• inferential operators: ωA(. . . ), i.e., a family (of sumptors) indexed on A in [⊥,→,∧,∨,∀,∃],
(2) Heyting proof-terms [primitive forms], as for `[MQ], with, moreover:

• inferential forms: ωA(e:⊥) [≡ ω(e:⊥) : A],
(3) Heyting proof-rules (the `[HQ]-stratification):

• proof-context rules: as for `∗[CQ] and/or `[MQ],
• “type-assignment” rules: as for `[MQ], with an additional inferential rule:

(→iω)h Γ ` e : ⊥ ⇒ Γ ` ωA(e) : A.
(4) λHQ is an equational theory defined on `[HQ] by the “Heyting proof-conversion rules”:

• λMQ-conversions [=Minimalkalkül]: as for `[MQ],
• inferential (Boolean): [β → λ], [η → λ], and [ξ → λ], [µ →], [ν →],
• algebraic:
Boolean: [β∧1], [β∧2], [η∧], and [ξ∧], [ν∧1], [ν∧2],
“minimal”: [β∨1]m, [β∨2]m, [η∨]m, and [ξ∨1]m, [ξ∨2]m, [µ∨]m,
• generic:
Boolean: [β∀], [η∀], and [ξ∀], [µ∀],
“minimal”: [β∃]m, [η∃]m, and [ξ∃]m, [µ∃]m,

• ω-rules (“ω-conversions”) [specific, beyond λMQ]:
• [βω]h (= [βω⊥]h, [βω→], [βω∧1], [βω∧2], [βω∨]h, [βω∀], [βω∃]h), i.e.,
Boolean βω-conversions: [βω→], [βω∧1], [βω∧2], [βω∀],
Brouwerian βω-conversions: [βω⊥]h, [βω∨]h, [βω∃]h,
• [ηω]h (≡ [η⊥ω]h ≡ [βω⊥], “⊥-extensionality”, Boolean),
• [νω] = (“ω-congruence”),

• “Heyting commuting conversions” [specific, beyond λMQ]:
• Brouwerian, [ω(⊥)]-conversions: [β∨⊥]h ≡ [β∨ω]h, [β∃⊥]h ≡ [β∃ω]h,
• positive t(∨)-conversions (i := 1,2): [β∨→]h ≡ [βt→], [β∨∧i]h ≡ [βt∧i], [β∨∀]h ≡ [βt∀],
• positive q(∃)-conversions (i := 1,2): [β∃→]h ≡ [βq→], [β∃∧i]h ≡ [βq∧i], [β∃∀]h ≡ [βq∀],
• negative t(∨)-conversions: [β∨∨]h ≡ [

∮tt:∨∨], [β∨∃]h ≡ [
∮qt:∃∃],

• negative q(∃)-conversions: [β∃∨]h ≡ [
∮tq:∨], [β∃∃]h ≡ [

∮qq:∃].
So, the “positive” stratification `[MQ] can be obtained from `[HQ], by leaving out the ω-primitive(s) and
the associated inferential rule (→iω)h. Analogously, λMQ is, equationally, like λHQ, except for the fact that
it lacks the ω-rules (“ω-conversions”) and the “commuting conversions” (in the present setting, 21 = 7 × 3
“postulates”).

Remark (The proof-conversion rules of λHQ).
(1) Since, ignoring congruence conditions, the theory λMQ is given by a dozen of equations as “postulates”

(exactly), the (formal) proof-theory of first-order intuitionistic logic (λHQ) requires 33 [viz., 12 + 21]
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“postulates”. For the record, λπ! has only 7 (βη-) “postulates”, whereas the proof-theory of first-order
classical logic – in its most economic form, i.e., λγ0CQ – needs an extra pair [

∮
γ]0, [η → γ]0 (7+2 = 9).

As expected, intuitionistic proof-theory is quite expensive.

(2) Genuinely “Brouwerian” conversion-rules. The classification of the λHQ-rules above makes also clear
the fact that the “purely” Brouwerian ideas are not too many and play a minor rôle in the economy
of the full game. They concern the special cases of the γ-applications (uses of reductio ad absurdum),
viz., those that are also “reliable” [Dutch: betrouwbaar] for the intuitionist. Specifically, these are the
“βω-conversions” in [βω]h (of which only [βω⊥]h, [βω∨]h, [βω∃]h are genuinely “Brouwerian”) and
the (Brouwerian) [ω(⊥)]-conversions: [β∨⊥]h and [β∃⊥]h. (The “⊥-extensionality” property [ηω]h ≡
[η⊥ω]h ≡ [βω⊥] is, after all, a Boolean rule.)

(3) Historically , the specific “Heyting” rules (the h-rules) that are not already “Brouwerian” should be rather
credited to Dag Prawitz [65]. Of course, on a pure provability-level, Johansson [36] is also indebted to
Heyting [30], and, as we can learn from Heyting himself (see, e.g., [Troelstra 78], [van Stigt 90] and
the relevant Heyting correspondence with Oskar Becker quoted in [Troelstra 81]), Heyting is ultimately
indebted – somewhat empirically – to Principia Mathematica! Otherwise, the “positive”/“minimal”
logic has been also anticipated by Jan ÃLukasiewicz, David Hilbert and Paul Hertz (1881-1940), one of
the collaborators of Hilbert on physics in Göttingen (1912-1933). But such rudiments were not (yet)
“proof-theory”, in the sense of the present notes. The “BHK”-reading of the HQ-proofs is, in fact,
the result of a systematic reflection on the meaning of proving , with the proofs as occurring in the
mathematical practice of the intuitionist, rather than the consequence of a formal study of provability
[a property that applies to propositions and/or formulas, not to proofs and/or proof-terms] in HQ.

Since the most general Boolean positive selectors
∧
`,

∧
\, and

∧
∪ make also sense intuitionistically, one can

define them in `[HQ] like in the classical case (and/or in `[MQ]).
Of course, `[HQ] can be confused with the set of Heyting p-terms

{ a : Γ ` a : A, for some context Γ, and some A in [⊥,→,∧,∨,∀,∃] }.
The usual syntactic notions (free/bound p-variables, subterm, etc.), related to `[HQ], are defined, mutatis
mutandis, as for `(∗,&)[CQ], and/or `[MQ]. A Heyting proof-combinator is a closed proof-term in `[HQ].
Clearly, HQ ‖− A [i.e., A is provable in HQ], iff [ ] ` a : A, in `[HQ], for some Heyting proof-combinator a.
Where the family ωA (A in [⊥,→,∧,∨,∀,∃]) and the “minimal”/Heyting [∨,∃]m-proof-operations are defined
as earlier, let [a]& be the definitional expansion, in `&[CQ], of a Heyting proof-term a in `[HQ], relative to
these definitions. Analogously, for A in [⊥,→,∧,∨,∀,∃], [A]& is supposed to expand A in [⊥,→,∧,∀], modulo
the standard (Boolean) definitions of ∨, ∃. One has first the following definitional embedding result.
Corollary (`[HQ]-definitional embedding into `&[CQ]). For all formulas A in [⊥,→,∧,∨,∀,∃], any proof-
context Γ and all Heyting proof-terms a of `[HQ] (where `h stands for derivability in `[HQ]),

(1) Γ `h a : A ⇒ Γ `& [a]& : [A]&, whence, in particular,
(2) HQ ‖− A ⇒ [ ] `& c : [A]&, for some Boolean proof-combinator c.
Proof . As for `[MQ], while (→iω)h is derivable in `(&)[CQ], with ωA(e) := γx:¬A.e [x /∈ FVλ(e)]. ¤
The long and boring list of facts reviewed in the above says that λγ&CQ contains equationally the Heyting
proof-calculus λHQ, as an extension of it, modulo an appropriate definitional embedding. We leave to the
reader the task of displaying a formal translation (embedding) [. . . ]& : λHQ −→ λγ&CQ that could make this
official (the theorem to get reading this time: λγ&CQ ⊃ [λHQ]&). As in the case of λMQ [Minimalkalkül],
the extension is proper .
At last, worth recording separately is the proof-consistency of the Heyting first-order logic HQ:
Theorem (Proof-consistency for HQ). Cons(λHQ).
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Proof . Because λγ&CQ extends λHQ and we had Cons(λγ&CQ). ¤
One might also note the fact that the entire procedure leading to Cons(λHQ) is also admissible intuition-
istically , since the critical step in the previous proof of Cons(λγ&CQ) is just a (syntactic) translation
of λγ&CQ into λπ! (a proper fragment of the Minimalkalkül). So, we have a translation of the Heyting
proof-calculus λHQ into a proper fragment of it (λπ!).
In the end, classical logic preserves [the proof-theory of ] HQ entirely . This is as it should be, since any
intuitionistically correct first-order [HQ-] proof -[identity ]-principle must be also classically correct.24As we
have seen before, the converse statement is also true, modulo frequent uses of an appropriate dictionary, viz.
the Glivenko “negative” translation, as applied to the proofs themselves.

24In particular, rephrasing the claim – “negatively” – in terms of the current ,επιστήµη, any atempt to a theory of classical
proofs that fails to explain – among other things – the Heyting/intuitionistic first-order “proof-isomorphisms” is also theoretically
inadequate – or else: it is not about classical proofs, either. The restrictive proviso to the “first-order” is relevant here.
Genetically, the concept of a first-order property is a fall-out of semantic considerations that are not intelligible intuitionistically.
It is, in fact, rigorously meaningless for the intuitionist, whose essential activity as a paradigmatic mathematician – activity
that includes logic, as a reflection on this very activity – is naturally immersed into a higher [order] medium, so to speak.
At this level, there are, of course, proof-principles (and so “proof-isomorphisms”, perhaps) that are not compatible with what
we use to call “classical mathematics” (cf., e.g., [Troelstra 80]). Whether the latter do still belong to the “province of logic”
in some sense – as distinct from mathematics, and insafar the distinguo is feasible at all within intuitionism – is matter for
much larger a debate. Contrast the above with William Tait’s somewhat abrupt case “against intuitionism” in his [83] (where,
the discussion – running in type-theoretic terms – ignores the rôle of the negative properties in Brouwer), and see, possibly,
[Tait 86], for a philosophical complement [we were unable to identify the promised sequel in print]. Tait’s views might well apply
– up to a certain point – to Bishop’s constructive mathematics (cf. [Bishop 67], [Bishop & Bridges 85], and [Beeson 85]), or to
Martin-Löf’s way of understanding it, for instance, but certainly not to Brouwer and Heyting. . . In this respect, such views are
also – mutatis mutandis – typical for a widespread kind of [loose] talk about “intuitionistic logic”, which makes, roughly, the
Heyting [first-order] logic = Minimalkalkül + the ex falso-rule. The looseness hides conceptual confusion, although the latter
remains invisible, as long as the proofs themselves – together with the appropriate isomorphisms – are not in the picture. In
order to understand Brouwer we have to put them back. For those concerned with theoretical logic alone, this is the main issue
in Brouwer’s work.
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Appendix

Assorted topics

[1] A Gentzen L-system for CQ. One can obtain a Gentzen L-style proof-system L[CQ] for first-order classical
logic CQ – a “sequent calculus”, with “sequents” that are “singular on the right” – by forgetting the proof-
information from `(&,∗)[CQ]. The outcome is, practically, a standard way of coping with “proof-theory”
within the proof-theoretic tradition (post-Gentzen).

Write, e.g., [Γ] for Γu,A1,. . . ,An, if Γ = Γu[x1:A1]. . . [xn:An] is a proof-context of `(&,∗)[CQ].

As ever, the notation “Γu[Γ]” means that the formulas of [Γ] may contain free U-parameters from among
those occurring in the list Γu = [u1:U]. . . [um:U].)

With ‖− in place of `(&,∗), one should have the following elliptic – “provability-only” – variants of the
`(&,∗)[CQ] stratification (-rules):

1.1 “Structural” rules.

< I ‖− > A ‖− A,
< K ‖− > [Γ] ‖− C ⇒ [Γ],A ‖− C,
< KW ‖− > [Γ],A ‖− C ⇒ [Γ],A,A ‖− C,
< ($)W ‖− > [Γ],A,A ‖− C ⇒ [Γ],A ‖− C,
< C ‖− > [Γ],A,B ‖− C ⇒ [Γ],B,A ‖− C,
< Ku ‖− > [Γ] ‖− C ⇒ [Γ][u:U] ‖− C,
< KWu ‖− > [Γ][u:U] ‖− C[[u]] ⇒ [Γ][u:U][u:U] ‖− C[[u]],
< Wu ‖− > [Γ][u:U][u:U] ‖− C[[u]] ⇒ [Γ][u:U] ‖− C[[u]],
< Cu ‖− > [Γ][u:U][v:U] ‖− C[[u,v]] ⇒ [Γ][v:U][u:U] ‖− C[[u,v]].

1.2 “Cut”-rules.

< $K ‖− > [Γ],A ‖− C ⇒ [Γ] ‖− C, if C does not depend on A,
< $uK ‖− > [Γ][u:U] ‖− C ⇒ [Γ] ‖− C, if u /∈ FVu(C),
< $uW ‖− > [Γ][u:U][v:U] ‖− C[[u,v]] ⇒ [Γ][u:U][u:U] ‖− C[[u,u]],
< $ ‖− > [Γ1] ‖− A; [Γ],A ‖− C ⇒ [Γ][Γ1] ‖− C,
< $[u] ‖− > Γu ‖− t :: U; [Γ][[u:U]] ‖− C[[u]] ⇒ Γu[Γ[[u:=t]]] ‖− C[[u:=t]].

2 “Inference” rules.

(→‖−) [Γ],B ‖− C; [Γ1] ‖− A ⇒ [Γ],A→B,[Γ1] ‖− C,
(→λ−‖) [Γ],A ‖− B ⇒ [Γ] ‖− A → B,
(→γ−‖) [Γ],¬A ‖− ⊥ ⇒ [Γ] ‖− A,
(∧‖−) [Γ]A,B ‖− C ⇒ [Γ],A∧B ‖− C,
(∧−‖) [Γ1] ‖− A; [Γ2] ‖− B ⇒ [Γ1][Γ2] ‖− A ∧ B,
(∨‖−) [Γ1],A,¬C ‖− ⊥; [Γ1],B,¬C ‖− ⊥ ⇒ [Γ1][Γ2],A∨B ‖− C,
(∨−‖) [Γ],¬A,¬B ‖− ⊥ ⇒ [Γ] ‖− A ∨ B,
(∀‖−) Γu ‖− t :: U; Γu[Γ],A[[t]] ‖− C ⇒ Γu[Γ],∀u.A[[u]] ‖− C,
(∀−‖) [Γ][u:U] ‖− A[[u]] ⇒ [Γ] ‖− ∀u.A[[u]],
(∃‖−) [Γ][u:U],A[[u]],¬C ‖− ⊥, ⇒ [Γ],∃u.A[[u]] ‖− C, where u /∈ FVu(C),
(∃−‖) Γu ‖− t :: U; Γu[Γ],¬A[[t]] ‖− ⊥ ⇒ Γu[Γ] ‖− ∃u.A[[u]].

Here, the notation “[Γ][u:U]” means that the U-parameter u does not occur in the formulas of [Γ] and, as for
`(&,∗)[CQ], if Γu is a list of U-parameters, the notation “Γu ‖− t :: U” means that the U-term t contains
possibly free U-variables from Γu.
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Without a proper proof-notation, the `(&,∗)[CQ]-rules < W >, < $W > are identified, while < $K >
cannot be even stated in formal terms. Further, < KW ‖− > and < KWu ‖− > can be viewed as instances
of < K ‖− > and < Ku ‖− >, resp.
In elliptic variant, the U-rules < Ku >, < KWu >, < Wu >, < Cu > and < $uK >, < $uW >, < $[u] >
appear as mere pedantic stipulations about the use of free “individual” variables in ‖−-“derivations”. In the
same spirit, < I ‖− > should have been stated rather as: Γu,A ‖− A, where FVu(A) = {u1,. . . um}, with Γu

= [u1:U]. . . [um:U], say. As expected, < $uW ‖− > can be obtained from < $[u] ‖− >.
As is well-known, a general Gentzen “sequent” C1,. . . ,Cp ‖− D1,. . . ,Dq, can be viewed as a shorthand for an
appropriate “right-singular sequent” A1,. . . ,An ‖− B (= the elliptic form of a proof-statement

[u1. . . um][x1:A1]. . . [xn:An] ` b[[u1. . . um,x1. . . xn]] : B[[u1. . . um]]).
In other words, one can use systematic abbreviations [Prawitz 65]

(‖−L) [Γ] ‖−L A1, . . . , An ≡df [Γ],¬A1,. . . ,¬An ‖− ⊥,
in order to obtain familiar Gentzen “sequent”-like rules for ∨, ∃:

(∨‖−L) [Γ1],A ‖−L C; [Γ2],B ‖−L C ⇒ [Γ1][Γ2],A∨B ‖−L C,
(∨−‖L) [Γ] ‖−L A, B ⇒ [Γ] ‖−L A ∨ B,
(∃‖−L) [Γ][u:U],A[[u]] ‖−L C ⇒ [Γ],∃u.A[[u]] ‖−L C, where u /∈ FVu(C),
(∃−‖L) Γu ‖− t :: U; Γu[Γ] ‖−L A[[t]] ⇒ Γu[Γ] ‖−L ∃u.A[[u]],

as a shorthand for the previous (∨‖−), (∨−‖), (∃‖−), (∃−‖), resp.
Of course, this makes (→γ−‖L), i.e., the elliptic variant of (→iγ) [reductio ad absurdum], look uninteresting
(Γ ‖−L A ⇒ Γ ‖−L A); its genuinely classical effect is, however, already incorporated into the “definition”
(‖−L) of a “right-multiple sequent”.
In particular, if understood in terms of ‖−L-abbreviations, the so-called rule of “contraction on the right”:

< W −‖L
> [Γ1] ‖−L [Γ2],A,A ⇒ [Γ1] ‖−L [Γ2],A,

is not a “structural” rule, but rather an ambiguous representation of distinct proof-operators [= derivation
rules], as, e.g.,

ε([x:¬A].a[[x]]:A) = γ([x:¬A].x(a[[x]]):⊥) : A,
γ([z:¬A].e[[z,z]]:⊥) = γ([x:¬A].x(γ([y:¬A].e[[x,y]]:⊥)):⊥) : A,

etc. [modulo proof-equality in, e.g., λγ(&)CQ], where the corresponding [non-elliptic] proof-situations are
Γ[x:¬A] ` a[[x]] : A ⇒ Γ ` εx:¬A.a[[x]] ≡df γx:¬A.x(a[[x]]) : A,
Γ[x:¬A][y:¬A] ` e[[x,y]] : ⊥ ⇒ Γ ` γx:¬A.x(γy.e[[x,y]]) = γz:¬A.e[[z,z]] : A,

resp., for [Γ] = [Γ1][Γ−2 ], with [Γ−2 ] = ¬B1,. . . ,¬Bn, if [Γ2] = B1,. . . ,Bn.
As a consequence, any attempt to define a “notion” of proof-reduction and/or proof-equality for CQ by direct
transformations applied to general [“right multiple”] L-sequents rests, inevitably, on conceptual confusion.25

The resulting L[CQ]-system has no real proof-theoretic import in the present setting, except perhaps for
the fact that the proof-discarding procedure used to generate it yields a straightforward way of showing
provability completeness for `(&,∗)[CQ], i.e.,

25Would-be “invariants” so obtained might “characterize” some particular way of organizing a preferred visual display, but
not proof-behaviors. With a technical – philosophical – term, this would also amount to a category mistake. The above make
obvious, we hope, the fact that the use of the primitive “notion” of a general [“right-multiple”] “sequent” in the description
of CQ-proofs (“derivations”) is a way of mishandling the subject-matter of logic. Otherwise, the wisdom resulting from
“eliminating the cuts” is available, in a proper theoretical setting, by specific metatheorems, as, e.g., the Sub-proof Theorem,
the Unicity of Typing for Boolean proof-terms (the Proof-categoricity property), and – relative to specific Boolean equational
theories or reduction systems – Proof-consistency, [Strong] Normalization properties, etc. [Yet, qualitatively, the latter type of
information makes up a structured body of mathematical knowledge and belongs, of course, to a different order of things. . . ]
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CQ ‖− A ⇐⇒ [ ] `(&,∗) a : A, for some Boolean proof-combinator a.
This information is, however, available directly, by comparing, e.g., the `&[CQ]-rules with an appropriate
N -formulation for CQ [Prawitz 65] (recall that `[CQ], `&[CQ], and `∗[CQ] are stratification-equivalent).

As an exercise, the reader could try to obtain an analogous L-style formulation L[HQ] for the Heyting
first-order logic HQ. (Hints. Use (∨‖−L), (∃‖−L), (∃−‖L), in place of (∨‖−), (∃‖−), (∃−‖), resp., specialize
(→γ−‖) to an appropriate instance (→ω−‖), via < $K ‖− >, where “⊥ does not depend on ¬A”, and
split (∨−‖L) into cases (∨i−‖L), [i := 1,2]. NB: Consider the instances ωA(e:⊥) ≡ γx:¬A.e of γ-
abstraction, with x not free in e, realizing also the fact that the Minimalkalkül [∨,∃]-proof-operators are
identical with the Heyting [∨,∃]-proof-operators and that they record actually the “positive contents”
of the Boolean [∨,∃]-proof-operators.)

[2] Proof-transformations in λγ(&)CQ. As expected, a standard notion of proof-reduction [“proof-détour
elimination”] .− for λγ(&)CQ can be obtained from the λγ(&)CQ-“axiomatics” above, by orienting the
equality-rules [left to right] and by leaving out the symmetry condition [σ]. (In common λ-calculus parlance,
.− is a “strong” notion, i.e., it is extensional .)
This induces a natural concept of a normal proof [“stable λγ-form”] in λγ(&)CQ (see [Rezuş 90] for details
about the properties of proof-reduction in a classical proof-calculus λγ(π)! which is, essentially, the same
thing as λγ(&)CQ without γ-diagonalization).
Where CQ ‖− A, let

∑
(A) be the set of normal proofs of A in λγ(&)CQ (referred to here as the normal

proof-spectrum of A). In λγ(&)CQ we have – “principially”, so to speak – no means of establishing significant
relations inside normal proof-spectra. In particular, we cannot compute a normal proof a1 of A from another
one a2 ∈

∑
(A).

In order to “exhaust” normal proof-spectra, one can use, however, type-preserving computation rules that
are different in character from those identified previously as reduction [= “détour elimination”] rules. The
latter are meant to define a special form of expansion of proof-terms, allowing us to “link” effectively distinct
normal forms in a given proof-spectrum.
Examples. The following proof-term transformations should very likely suffice for λγCQ, to this purpose :

{Â} Γ ` f Â g [: C], if Γ ` f .− g : C,
{βλ} Γ ` f(λx:A.e[[x]]) Â γy:¬B.e[[x:=γz:¬A.y(f(z))]] [: B], if Γ ` f : ¬A → B and Γ[x:A] ` e[[x]] : ⊥,
{βγ} Γ ` f(γx:¬A.e[[x]]) Â γy:¬B.e[[x:=λz:A.y(f(z))]] [: B], if Γ ` f : A → B and Γ[x:¬A] ` e[[x]] : ⊥.

Obviously, the computation rules {βλ} and {βγ} above are type-[= provability]-preserving.
By the Â-variant of [βγ⊥] (and [η → λ], a characteristic feature of .−), one has immediately the special
cases:

{βλ⊥} Γ ` f(λx:A.e[[x]]) Â e[[x:=γz:¬A.f(z)]] [: ⊥], if Γ ` f : ¬¬A and Γ[x:A] ` e[[x]] : ⊥,
{βγ⊥} Γ ` f(γx:¬A.e[[x]]) Â e[[x:=λz:¬A.f(z)]] Â e[[x:=f]] [: ⊥], if Γ ` f : ¬A and Γ[x:¬A] ` e[[x]] : ⊥.

Where ≺ is the converse of Â, it is easy to see that, e.g., {βγ⊥} yields, for all formulas A (in [⊥,→,(∀)],
say), and for any two proof-terms a1, a2 (in λγCQ and, even, in its sub-system without γ-diagonalization),

(Â≺) Γ ` a1, a2 : A ⇒ Γ ` a1 ≺ a Â a2 : A, for some a,
(that is, ultimately, we have “proof-irrelevance” relative to the symmetric closure, Â≺, say, of Â, whence Â≺
is rather uninteresting theoretically).
From an intuitive point of view, the rules {βλ}, {βγ} have the effect of “moving around” particular appli-
cations of reductio ad absurdum within a proof (-term). Formally, one has a rigorous counterpart of the
concept of a reductio-transfer .
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A careful manipulation of this notion leads to unexpected [oft useful] observations. One can establish, for
instance, the fact that the normal proof-spectra of CQ-provable formulas can be exhausted by a systematic
use of reductio-transfer (where the “systematic use” has, ultimately, the character of a Beth-tree [-like]
proof-search for CQ).

[3] “Double negation” interpretations of classical proofs: a theme from [Kolmogorov 25]. The Glivenko
[28,29] translation maps CQ into (a fragment of) MQ. By [Kolmogorov 25] we know that CQ can be also
translated into MQ (and/or HQ), using – in an essential way – specific operations of “double-negation
introduction”.
As regards provability, the basic idea consists of performing a uniform “double negation” interpretation
of CQ-formulas within the HQ-syntax; this is done recursively on subformulas, such that, ultimately, the
“primes” are negated at least once during the process. In the limit case (Kolmogorov), if we insert double
negations in front of every subformula of a classically valid formula – outermost pair included –, the result
is a formula that is provable in the Heyting logic.
There are several variations on this theme: all of them yield an analogous (provability) variant of the first
“Glivenko Lemma”, – applying, mutatis mutandis, to CQ and HQ – although they are not informative
equationally. The main reason is in the fact that the straightforward extension of a “double negation”
translation to proof-terms does not preserve the equality of the ordinary (extensional) typed λ-calculus,
λτ .26

We discuss next, briefly, the proof-extension of the original Kolmogorov [25] translation-pattern. In order
to evidentiate the main idea, we consider only typed languages based on a [⊥,→]-type-structure (otherwise,
once the basics are understood, supplying the missing cases is a relatively trivial affair).
The general situation can be captured informally, at a provability level, by noting that
(a) where ¬¬(. . . ) ≡ ((. . . ) → ⊥ → ⊥), a “double negation” translation – from CQ to CQ [sic!] – is

supposed to insert uniformly ¬¬(. . . )-“contexts” around some sub-types in a [⊥,→,. . . ]-type, and that,
(b) in order to realize the intended meaning of the translation [the target should be, in the end, at most

HQ, not CQ, in general], the “negative” occurrences of the “primes” must fall within the scope of a
((. . . ) → ⊥)-“context” [i.e., they must be negated], once the process is completed.

Would-be variations occur by specifying the exact distribution of the ¬¬-insertions. If the translation is also
recursive (as in the familiar cases, encountered in the literature), we have some control on the typology of
the variants. Ignoring for a moment the translation (. . . )a of the atoms (⊥ and the “primes”), we have
prima facie, with a primitive [⊥,→]-structure, three kinds of possibly distinct “double negation” translations
(. . . )k, of the Kolmogorov-kind. If C ≡ (A → B), and A, B are atoms, we can get either

26As a matter of fact, this depends also on the choice of type-primitives. The characterization above applies verbatim
to situations where the source language has at least primitive →-types: [Kolmogorov 25] is a case in point. If the →-types
must be also defined [“simulated”] in terms of other primitives –, e.g., if we rely on [∧,¬,(∀)]-formulations of classical logic,
as in [Gödel 33], say – there are additional complications, although the outcome is the same. Somewhat a priori , in such
cases we can never retrieve the familiar extensionality principles of λ-calculus, on different reasons, though. There is some
interest in this type of anomaly, because equational systems (or yet, in general, reduction systems) induced by a “double
negation”-interpretation make sense from a computational point of view . Mutatis mutandis, such situations give rise to weak
proof-systems for classical logic, falling under a would-be general rubric intensional proof-theories. This area of investigation
has not beeen suitably charted thus far: at the time of writing, we have at hand, roughly, a body of closely related examples
and an indefinite number of (unanswered) questions about them. Historically, a translation much similar to Gödel’s has been
found by Gentzen (1933), independently (in view of [Gödel 33], he didn’t estimate it interesting enough to deserve publication,
cf. [Gentzen 74]). On a pure provability level, the theme has been oft revisited (S. Kuroda 1951, J. ÃLukasiewicz 1952, M. H.
Löb 1976, H. Friedman 1978, D. Leivant 1985, etc.). There is no real theoretical profit in examining separately the equational
proof-behaviors induced by the proposed mappings (one can retrieve them by proceeding systematically, anyway).
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(1k) (C)k ≡ ¬¬(¬¬(Aa) → ¬¬(Ba)), (as in [Kolmogorov 25]), or
(2k) (C)k ≡ ¬¬((Aa) → ¬¬(Ba)), or
(3k) (C)k ≡ ¬¬(¬¬(Aa) → (Ba)).

Of these, the third choice is non-productive for the intended purposes, although – technically – it yields a
perfect endomorphism of CQ-proofs (in other words, the resulting proof-term mapping won’t eliminate the
genuinely Boolean uses of γ’s). The second one respects the Kolmogorov translation-pattern, although it is,
in a sense, worse than the original Kolmogorov proposal: the intended proof-extensions do not even preserve
[all instances of] the usual β-equality.27

Let, as ever, λγ
∮

be the ([⊥,→])-fragment of λγ(&,∗)CQ. [This is a system with full γ-diagonalization.] (In
order to ease readability, we assume that the notations (. . . )K , (. . . )K bind stronger than any other syntactic
operation.) In terms of proofs, the Kolmogorov [25] “double negation” translation reads as follows:
Definition (The Kolmogorov [25] “negative” translation).

Define a map (. . . )K from proof-statements Γ ` a : A of λγ
∮

to ([⊥,→,. . . ]) proof-statements of the
form (Γ)K ` (a)K : (A)K [in λMQ], λHQ], by:
• (t)K ≡ t, for any U-term t,
• (⊥)K ≡ ¬¬(⊥K) [≡ ¬¬(⊥)], where ⊥K ≡ ⊥,
• (A)K ≡ ¬¬(AK) [≡ ¬¬(A)], for any “prime” A, where AK ≡ A,
• (A →B)K ≡ ¬¬(A → B)K [≡ ¬¬(AK → BK)], where (A → B)K ≡ (AK → BK),
• (Γ)K ≡ Γu ^ [x1:(A1)K ]. . . [xn:(An)K ], for any proof-context Γ := Γu ^ [x1:A1]. . . [xn:An]
• (a)K , by induction on the structure of a, [with, as above, (C)K ≡ ¬¬(CK)],

• (x)K ≡ x,
• (λx:A.b[[x]])K ≡ λk:¬(A→B)K .k(λx:AK .(b[[x]])K),
• (fa)K ≡ λk:¬BK .(f)K(λx:(A→B)K .x(a)K(k)),
• (γz:¬A.e[[z]])K ≡ λk:¬AK .(e[[z]])K [[z:=ϕK(k)]](ΩK), where

ϕK(k) ≡ λx:¬(A→⊥)K .x(λy:¬¬(A)K .λi:>.y(k)), and
ΩK ≡ Ω [≡ λx:⊥.x].

The reader will check the fact that (. . . )K is well-defined as a map. The extension of (. . . )K to `(&,∗)[CQ]
is straightforward (yet, variants are possible for the first-order case) [exercise]. We obtain the expected
“Kolmogorov Provability Lemma”, by applying (. . . )K to C(Q)-proof-statements:

27It is, nevertheless, unobjectionable on a provability level. As an aside, (2k) occurs also naturally in considerations on the
semantics of imperative programming languages, where it can be encountered under the label “cps [= continuation passing style]
translation”. The observation is due, independently, to Matthias Felleisen (in a type-free setting: Ph D Diss., Indiana Univ.,
Bloomington IN, 1987), Bruce Duba and Timothy Griffin (1990). Under the specific computational interpretation, the genuinely
Boolean γ-constructs are identified as non-local control-phenomena (simplifying a bit, these are jump-like programming con-
structs). Originally, Felleisen and his associates used a mixed combinatory reduction system – in the sense of Jan Willem Klop
–, based on a λ-calculus syntax with additional combinators C (“control”) and A (“abort”), resp. corresponding to unstratified
versions of ∆[[A]] ≡df λx:¬¬A.γy:¬A.x(y)) [duplex negatio affirmat ], and ω[[A]] ≡df λx:⊥.γy:¬A.x [ex falso quodlibet ], resp.
[The latter one wasn’t, in fact, necessary, since it is definable, if the former one is present.] As expected, the transcription of
the results in λγ-terms is straightforward. The – proof-theoretically offending – situation that the βη-rules fail to obtain, in
general, is accommodated under the computational reading by using a so-called call-by-value λ-calculus instead. In particular,
(1k) and (2k) above match, mutatis mutandis, after stratification, the well-known (Gordon D. Plotkin 1975) translations from
call-by-name-style to call-by-value-style evaluation and conversely. This looks natural, indeed, in a pure computational setting,
but we have – unfortunately – no reasonable proof-counterpart of this kind of reading the rules. More recent speculations on
the theme “extracting computational content from classical proofs” [no relation to Bishop’s ideas of the sixties] are by the
way, from the present point of view. [Felleisen himself did – wisely – refrain from making hurried extrapolations; indeed, both
proving- and computing-phenomena might well have common roots: the fact is that we don’t have yet the right conceptual
means of understanding what is going on.] We are indebted to Jon Seldin for signalling to us the work of Felleisen and Griffin
(by Fall 1990), and to Matthias Felleisen, Tim Griffin, and Chet Murthy for further details (1990-1991).
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Lemma (A. N. Kolmogorov, 1925). Γ ` a : A [in λγ
∮

] ⇒ (Γ)K ` (a)K : (A)K [in λ(M,H)Q].

Proof . By induction on the relevant (here: [⊥,→]-) fragment of `0[CQ]. ¤

Remark (“The Kolmogorov λγ-calculus”). It is relatively easy to check the fact that the λγ&-equalities
[β → λ], [η → γ], [βγ →], and [

∮
0
γ] (i.e., the “weak diagonalization”) are verified under the (. . . )K-

translation [exercise]. It is not so, however, for [η → λ], [βγ⊥], and [
∮

γ] (“full diagonalization”). There is
nothing we can do about the first one (as observed earlier, the absence of the usual extensionality principles
is a general feature of this kind of approach). In place of the latter two, we have also a weaker – γ-“diagonal”,
so to speak – form of [βγ⊥], viz.,

[βγ0⊥] Γ ` γx:¬A.γy:>.e[[x,y]] = γx:¬A.e[[x,y]][[y:=λz:⊥.ω⊥(z)]] [: A], if Γ[x:¬A][y:>] ` e[[x,y]] : ⊥.

([Kolmogorov 25] has, in fact, a primitive ¬ in place of ⊥, while the original mapping would have required
⊥K ≡ ⊥, with, perhaps, an additional “type-isomorphism” ¬¬(⊥) ≡ ⊥. The variant above simplifies the
matter: it actually maps C(Q)-proof-statements [in]to λM(Q).)

From this, we obtain a somewhat ad hoc Boolean proof-theory (in the technical sense of the present notes),
“a Kolmogorov [typed ] λγ-calculus”, λγK , say. As noticed in the above, the outcome is an intensional proof-
theory [a sub-system of λγ

∮
, in fact]. As an additional idiosyncrasy (beyond the absence of the usual η-rule),

by the failure of [βγ⊥], λγK is unable to eliminate entirely “complex” [in favor of “prime”-only] uses of γ.

We don’t know if the equational system determined by the list above is complete relative to the (. . . )K-
translation, nor if it has, in itself, any interesting (meta-theoretic) properties.

The second Kolmogorov translation-pattern (2k) above admits of at least two different extensions to p-terms:
the specific choice depends on a decision involving an additional parameter, viz. the order of evaluating p-
terms in the source language. (As one would expect, the alternatives should be equivalent in some sense.)
We write conveniently (. . . )+, (. . . )− for the corresponding mappings, and (. . . )± for both.

Definition (The “continuation-passing-style” translations).

Define maps (. . . )± from proof-statements Γ ` a : A of λγ
∮

to ([⊥,→,. . . ]) proof-statements of the form
(Γ)± ` (a)± : (A)± [in λHQ], by:

• (t)± ≡ t, for any U-term t,

• (⊥)± ≡ ⊥,
• (A)± ≡ A, for any “prime” A,
• (A →B)± ≡ (A)± → ¬¬((B)±),

• (Γ)± ≡ Γu ^ [x1:(A1)±]. . . [xn:(An)±], for any proof-context Γ := Γu ^ [x1:A1]. . . [xn:An]

• (a)±, by induction on the structure of a,

• (x)± ≡ λk:¬(A)±.k(x), if Γ ` x : A, in λγ
∮

,
• (λx:A.b[[x]])± ≡ λk:¬(A→B)±.k(λx:(A)±.(b[[x]])±),
• (fa)+ ≡ λk:¬(B)+.(f)+(λx:(A→B)+.(a)+(λy:(A)+.x(y)(k))),
• (fa)− ≡ λk:¬(B)−.(a)−(λy:(A)−.(f)−(λx:(A→B)−.x(y)(k))),
• (γz:¬A.e[[z]])± ≡ λk:¬(A)±.(e[[z]])±[[z:=ϕ±(k)]](Ω±), where

ϕ±(k) ≡ λx:(A)±.λi:>.k(x), and Ω± ≡ λx:⊥.ω⊥(x).

We have immediately the following provability result (where, to our knowledge, the (. . . )−-part has been
first noticed by C. R. Murthy 1991):

Lemma (B. Duba, T. G. Griffin, 1990). Γ ` a : A in λγ
∮ ⇒ (Γ)± ` (a)± : ¬¬(A)± in λH(Q).

Proof . As ever, by induction on the [⊥,→]-fragment of `0[CQ]. ¤
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The (. . . )±-mappings verify only a local version of the usual β-rule [β → λ], (call-by-value), where, in a
détour of the form (λx:A.b[[x]])(a), the “argument” a must be a p-variable or a λ-abstract (in computer-
science jargon, a “value”). So, e.g., (λx:A.b[[x]])(f(c)), and b[[x:=f(c)]] are to be viewed as standing – in
general – for distinct proof-objects, under this “interpretation”.28

As in the case of (. . . )K , verified under (. . . )± are also [η → γ], [
∮
0
γ] (“weak diagonalization”), and [βγ0⊥].

Further, (. . . )+ verifies [βγ →], while (. . . )− does it locally alone [i.e., the “argument” of the γ-abstract
γz:¬(A→B).e must be a “value”].
As an idiosyncrasy, in view of the weak/truncated β-behavior, (. . . )− verifies the following curious property:

[γβ →] Γ ` f(γz:¬A.e[[z]]) = γy:¬B.e[[z:=λx:A.ω⊥(y(f(x)))]] [: B],
if Γ[z:¬A] ` e[[z]] : ⊥ and Γ ` f : A → B,

whereas (. . . )+ does it, too, but just locally , for f restricted to p-variables and λ-abstracts.29Notably, [γβ →]
does not hold – not even in the local sense – in other λγ[CQ]-theories of concern here: it actually leads to
inconsistency (or just “proof-irrelevance”) in presence of [β → λ] (and [η → λ], [η → γ]). As pointed out
in the previous note, one can use the general form of [γβ →] – along with other ones of the kind – as a
“computing rule”, intended to enable us retrieving the normal proofs of a given classical theorem (although
“normal” must be taken – in this case – as being relative to a more comprehensive reduction system).
The reader will establish the fact that – like in the case of (. . . )K – the →-extensionality property [η → λ],
[βγ⊥], and the “full diagonalization” ([

∮
γ]) are not “interpreted” under these translations.

Nearly nothing is known, at the time of writing, about would-be relative completeness-properties of the
resulting λγ-formalisms.30

28This is, likely, in full agreement with the way some/most of our computing engines do actually operate, but is a rather
silly assumption about classical [or other kind of] proofs. Of course, proving as actually performed by humans (and machines)
does depend on the “order of evaluating” proof-components; it is so, in particular, if proofs are “recognized” only by being
“seen” first. But we also think that this way of viewing things belongs to psychology (or to “natural history”, for that matter),
rather than to the very province of logic.

29The local version – by the way – has a plausible computational interpretation in terms of imperative computer-programs.
30To put a name on the outcome, (. . . )+ yields the equational system of Felleisen’s “calculus of non-local control” (the

evaluation of “applications” is done here – “naturally”, in some sense: as in Western cultures and present-day computers –
from left to right). By the end of December 1991, Matthias Felleisen has confirmed the fact that he has partial evidence for
the completeness of the equational system induced by (. . . )+, as listed – at least implicitly – in the above. The system induced
by (. . . )− looks “artificial” (but, likely, only as opposed to the artificial sense of the word “natural”, a few lines before). The
call-by-value calculi induced by (. . . )± are not proof-theories, in the sense of the present notes. [To our knowledge, neither
Felleisen nor his collaborators have ever claimed any proof-theoretic relevance for such formalisms, anyway.] Whether they
pertain to “proof-theory” in some other sense of the word, we don’t know.



BEYOND BHK 65

Further reading

A guide to BHK (cca 1925–1993 ). The main text is rather parcimonious in references and many topics,
supposed familiar, have not been documented bibliographically ad locum. What follows is an attempt to
remedy this defect by proposing a convenient grouping of the main themes discussed – or only alluded to –
in the above and by supplying a selection of basic references for each rubric.31

A. Lambda-calculus, combinatory logic and type-theory.
• general: [Church 41], [Curry et al . 58,72], [Stenlund 72], [Barendregt 842], [Hindley & Seldin 86],

[Seldin 87], [Girard et al . 89], [Krivine 90],
• special topics: “completeness” (for βη-normal forms) [Böhm 68], “surjective pairing” and strong

normalization [Tait 67], [Stenlund 72], [Barendregt 74], [van Daalen 80], [Troelstra 86], [de Vrijer 87].
B. Intuitionism in general.
• the Brouwer-Heyting bibliography: [van Stigt 90], Chapter I, pp. 1–19 (Brouwer), [Niekus et

al . 81] (Heyting),
• Brouwer texts [logic, philosophy of mathematics]: [Brouwer 07], [Heyting (ed.) 75R] [van Dalen

(ed.) 81,81a,84,92], [van Stigt 90 (ed.)], Appendices, pp. 387-505.
• Brouwer’s views: [van Dalen 78,80,81b,84,87,90,91], [van Stigt 90],
• systematic expositions: [Heyting 34,55,56,80R], [Troelstra 69,73], [van Dalen 73], [Dummett 77],

[Veldman 87] (based on lectures J. J. de Iongh, Nijmegen), [Troelstra & van Dalen 88].
C. Bishop’s Constructive Mathematics (BCM).
• [Bishop 67], [Bishop & Bridges 85], [Beeson 85].

D. The Automath-family.
• [de Bruijn 80,90] (survey, retrospect, references), [Zucker 77] (AUT-Π, 1975), [Jutting 79 (1977)],

[van Daalen 80] (main treatise), [Rezuş 83 (1982)], [Barendregt & Rezuş 83], [Rezuş 87 (1983-1986)].
E. The “Heyting logic” (HQ).
• sources: [Kolmogorov 25,32], [Glivenko 28,29], [Heyting 30,34,56],
• history: [Thiel 88] (“Brouwer’s logic” before [Heyting 30], references), [Troelstra 78,81,83] (the

origins of HQ),
• technical aspects: [Troelstra 73], [Zucker 74], [Dummett 75,77], [Pottinger 76,77], [van Dalen 79,86],

[Troelstra & van Dalen 88],
• the Minimalkalkül: [Johansson 36], [Curry 63], [Prawitz 65], [Prawitz & Malmnäs 68], [Auge 89],
• the Heyting calculus, proof-equality (in HQ, etc.): [Prawitz passim], [Kreisel 71], [Stenlund 72],

[Troelstra 73,75], [Pottinger 76,77], [Feferman 79], [Cellucci 80], [Girard et al . 89].
F. The BHK-interpretation.
• [Kolmogorov 25,32], [Heyting 34,55,80R], [Freudenthal 37],
• [Kreisel 62,65] (formalization; cf. also [Goodman 70]), [Dummett 77], [van Dalen 79], [Diller 80],

[Cellucci 81], [Troelstra 81,83], [Sundholm 83] (references), [Diller & Troelstra 84 (1982)], [Martin-
Löf 84,85,85a], [Troelstra & van Dalen 88] (references).

31The bulk of the material on what is traditionally called “proof-theory” can be easily retrieved, from general bibliographies
[as, e.g., that of the Ω-group], whereas the main concern of these notes – the equational theory of classical proofs – is practically
inexistent in the literature. Whence, the “guide” following below, would rather look like a collection of hints for a paleographer:
in particular, if he disagrees with the present attempt to a reconstruction, the reader will have to imagine and reshape a
“prototype” himself. It is, however, unlikely that there are too many distinct ways of playing the same game – i.e., without
changing the subject of discussion, once more, by proposing a new logic.
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G. “Propositions-as-types” and “condensed detachment”.
• [Curry et al . 58] (± 1930, according to J. P. Seldin), C. A. Meredith (1950-1952),32
• [Läuchli 70 (1965)], [Scott 70 (1968)] [Howard 80 (1969)], [de Bruijn 80 (1970)], [Martin-Löf 71,72

(1970)], [Girard et al . 89 (± 1971, Ph D 1972)].
• Meredith “condensed detachment”: [Meyer & Bunder 88] (from R. K. Meyer & L. H. Powers 1974),

[Kalman 83 (1974)], [Rezuş 82 (1979-1980)], [Hindley & Meredith 90 (1988)].
H. Martin-Löf ’s Constructive Type Theory (CTT).
• [Martin-Löf 71,72,75,75a,82,84], [Beeson 85], [Rezuş 86,87], [Troelstra & van Dalen 88].

I. “Natural deduction” displays and “sequent”-systems.
• sources: [Jaśkowski 34 (1926)] (presented at the first Polish Mathematical Congress: Lwów 1927),

[Gentzen 35 (1932-1934)] (Ph D: Göttingen 1934, using previous work of Paul Hertz: Göttingen
1922-1929),

• “nested blocks” (“sub-proof” style): [Fitch 52 (1950)], [de Bruijn 78,80,81] (using – since 1968 –
“abstraction-displays”, in Automath and the Mathematical Vernacular [Dutch: WOT], based –
apparently – on the “flag”-notation of Hans Freudenthal; cf. also [Nederpelt 77,87], for further
developments on WOT, and [de Bruijn 90], for historical details),

• ground-work (fresh start): [Prawitz 65 (1964)], [Prawitz 71,73,81a]
• surveys: [Tennant 78], [Sundholm 83a], (cf. also [Auge 89]),
• generalizations: [Schröder-Heister 81,82,82,84,84a,85], [Belnap 82], [Gabbay 90,91], [de Queiroz &

Gabbay 91,92,92a].
J. “Beweistheorie” vs “general proof-theory”.
• [Hilbert & Bernays 31,34], [Gentzen 35 (1932-1934)], [Kreisel 71], [Prawitz 73,74,81].

K. “Meaning theory” (for [the HQ-] proof-operations).
• [Prawitz 77,79], [Cellucci 80,81], [Schröder-Heister 81,82,83,84,84a,85], [Martin-Löf 85,85a], [Sund-

holm 83,86], [Tieszen 89] (a phenomenological [Husserl] interpretation).
L. “Negative” translations (at a provability-level).
• [Kolmogorov 25], [Glivenko 28,29] (main remark), [Gödel 33], [Gentzen 74 (1933)], [Kuroda 51],

[ÃLukasiewicz 52], [Cellucci 69], [Löb 76], [Friedman 78], [Leivant 85 (1981)].
M. The “Law of Clavius” and the DQ-logic.
• the “Law of Clavius”: [Euclid Elementa IX.12], [Cardano 1663 (1570)], [Clavius 1611 (1574)],

[Saccheri 1697,1733]; secondary literature: [Vailati 03,03a,04,04a], [Kneale 57], [Kneale & Kneale
62R], [Miralbell 87], [Nuchelmans 92] (further references),

• DQ-logic (Curry’s LD): [Curry 52 (1950)], [Curry 572,63], [Seldin 89].
N. Classical proofs, proof-semantics.
• [Prawitz & Malmnäs 68], [Prawitz 81a (1975)], [Helman 83,87] (likely earlier: ± 1978, following

N. D. Belnap Jr.), [Rezuş 81,87a,88,89,90,91,93]; other (recent) approaches: [Mondadori 88], [Bun-
der 90], [Girard 91].

32Carew A. Meredith (1904–1976), a former student of Jan ÃLukasiewicz in Dublin, has formulated independently a combi-
natory variant of the “propositions-as-types” isomorphism, relying – apparently – on considerations derived from a proof-method
that was popular in the early Polish school, due to J. ÃLukasiewicz and A. Tarski ± 1925 [sic!]. The original “Polish method”
concerned likely the “protothetics” of StanisÃlaw Leśniewski. It has never been recorded in print, and is lost now [no survivors;
information confirmed by David Meredith: December 1979]. Cf. [Prior 622] Appendix II , [Meredith & Prior 63], [Meredith 77],
[Rezuş 82 (1979-1980)], [Hindley & Meredith 90 (1988)]. The C. A. M. bibliography can be found in [Meredith 77].
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1968 Alcune proprietà delle forme β-η-normali nel λ-K-calcolo, Pubblicazioni del Istituto per le Ap-

plicazioni del Calcolo [CNR, Rome] 696, 1968, pp. 1–19 [separatum].
Bridges, Douglas

1985 see [Bishop & Bridges 85].
Brouwer, Luitzen Egbertus Jan

1907 Over de grondslagen der wiskunde, [Ph D Diss., University of Amsterdam 1907], Maas & van
Suchtelen, Amsteradm/Leipzig 1907, 183 pp. (Reprinted in: [van Dalen 81R]. Translation into English
[On the Foundations of Mathematics, by A. Heyting], in: [Brouwer 75R], vol. 1, pp. 11–97, with
[Stellingen/Statements], pp. 98–101.) 4

1975R see [Heyting 75R]. 4

*Items marked 4 in the bibliography are not cited explicitly in the main text; they are intended to document – rather
selectively – either background issues and historical aspects of the main theme or assorted topics, and matters referred
to obliquely in the above. The list has been slightly updated on revision, in July 1993, and in January 2006. Items
marked ∇ include last minute additions, and, mainly, web-references. We are grateful to all those authors – too many to
be mentioned individually here – who have kindly provided along the years bibliographical pointers to their colleagues’ work,
as well as to their own. — Worth mentioning separately among the recent updates are (1o) the marvellous biography of
L. E. J. Brouwer, due to the indefatigable Dirk van Dalen [van Dalen 2001], teacher and friend, (2o) the online Automath
Archive, stored at the Eindhoven University of Technology (2004), a tribute to Nicolaas G. de Bruijn – our last teacher
in maths & meta –, by his many students and co-workers [a huge amount of work, indeed], and, last but not least, (3o)
the Elsevier monograph, Lectures on the Curry-Howard Isomorphism – on the very subject of these notes –, due to
Morten Heine B. Sørensen [Copenhagen] and Peter Urzyczyn [Warsaw], scheduled in print for 2006; originally a one-semenster
graduate / Ph D course held at DIKU [Computer Science Department, University of Copenhegen], Copenhagen, 1998–1999.



68

1981 see [van Dalen 81a]. 4
1984 see [van Dalen 84]. 4
1992 see [van Dalen 92]. 4
de Bruijn, Nicolaas G.

1978 Taal en structuur van de wiskunde [The Language and Structure of Mathematics], Lecture Notes,
University of Eindhoven, Department of Mathematics and Computing Science, Spring Semester, 1978.
(See Euclides 55, 1979/1980, pp. 7–12, 66–72, 262–268, 429–435, and [Nederpelt 87].) 4

1980 A survey of the Automath project , in: J. P. Seldin and J. R. Hindley (eds.) To H. B. Curry, Essays
on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London, etc. 1980,
pp. 579–606. 4

1981 Formalizing the Mathematical Vernacular , University of Eindhoven, Department of Mathematics and
Computing Science, March 1981, 48 pp. 4

1990 Gedachten rondom Automath [Reflections on Automath], University of Eindhoven, Department of Math-
ematics and Computing Science, March 1990, 24 pp. (For an English version of this report see also Rob
Nederpelt, J. H. Geuvers, and Roel C. de Vrijer (eds.) Selected Papers on Automath, North-Holland,
Amsterdam, etc. 1994.) 4 ∇

Bunder, Martin W.
1988 see [Meyer & Bunder 88]. 4
1990 Combinatory logic and lambda calculus with classical types, University of Wollongong, Department of

Mathematics, Wollongong NSW (Australia), [typescript], 1990-1991 (?), 11 pp. 4
1991 see [Meyer et al . 91]. 4
Cardano, Gerolamo (1501–1576)

1663 Opera omnia [Hyeronymi Cardani Mediolanensis], edited by Karl Spon, 10 vols. in f◦, Lugduni [i.e.,
Lyons, France], 1663. (Reprographic reprint: Fromann Verlag, Stuttgart/Bad Cannstatt and Johnson
Reprint Corporation New York/London 1966/1967. The Opus novum De proportionibus – first issued
in Basle 1570 – is printed in vol. 4. Cf. pp. 579–581. The original edition [1570] is now available online
at the Archimedes Project [cf. http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi =
author index]; see also http://equivalences.org, sub équivalences/éditions, 2006.) ∇
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1991 Proof semantics for modal logics: Glivenko semantics and epistemic models, June 1991 [revised: October
1991].

1993 Witness Structures [in preparation] (cf. also http://www.equivalences.org, 2006). 4 ∇
van Riemsdijk, H.

1981 see [Niekus et al . 81].



BEYOND BHK 79

Saccheri, Gerolamo, SJ (1667–1733)
1697 Logica demonstrativa, quam una cum thesibus ex tota philosophia decerptis, dependendam proponit

Joannes Franciscus Caselette. . . , Typis Ioannis Baptistae Zappatae, Augustae Taurinorum [i.e., Turin]
16971, 8◦ ([Copy: Brera Milano = Biblioteca Nazionale Braidense.] Reprint: L. d., Mit einer Einleitung
von Wilhelm Risse. Nachdruck der Ausgabe 1697 Turin. Olms Verlag, Hildesheim/New York 1983R,
10 + 12 + 287 pp. There are two other editions: L. d.,. . . Auctore. . . Hieronymo Saccherio, S.J.. . . ,
Typis Haeredum Caroli Francisci Magrii, Ticini Regii [i.e., Pavia] 17012, 167 pp. 8◦ [copies: BU Pavia,
BNC Rome, BN Naples] and L. d.,. . . Auctore. . . Hieronymo Saccherio S.J.,. . . , Heinrich Noethen,
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Schröder-Heister, Peter J.
1981 Untersuchungen zur regellogischen Deutung von Aussagenverknüpfungen, [Ph D Diss. =
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