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ON A THEOREM OF TARSKI®
by

Adrian Rezus

In the mid-twenties Alfred Tarski raised the problem of axioma-
tizing classical propositional logiq.(Iy,for short) by a single
axiom and the rules of detachment (for material implication) and
substitution as primitive rules of derivation.The problem was
solved,by Tarski again,in 4925,for a large class of propositio-
nal logics,as eventually announced in [4;],Theorem 8,but no
proof of the result claimed there was ever published,

The method of Tarski for finding single axioms was frequently
referred to in print (see, e.g_.,[e] 1}_3] l:il] [/14] etc.) and though
several persons — among which authors of textbooks of logic —
have been certainly familiar to the principle involved in the ori-
" ginal proof,none of them has ever documented the method for a
larger audience,

We have discovered incidentally an analogue of Tarski's original
method in the late 18739,relying on an extremely simple lambda-
calculus argument (cf. lﬁgl) This note reports some elaborate
details of work contained,in essence,in [ig},sectlon 4 extendlng

Tarski's result in various directions,.

* This work was partly supported by the University of Utrecht.The
author 1s indebted to Henk Barendregt,David Meredith énd Willem
Levan der Poel for useful comments on earlier dfafts of this pa=
per.Also Ian Douglas,Robert K.Meyer (A.N.U.,Canberra) and Alasdair
Urquhart (University of Toronto) have largely facilitated us the

access to unpublished,as yet,material on relevant logics.



A.Preliminaries.

Throughout in the sequel,a propositional language is constructed

as usual,from a denumerably infinite list of propositional varia-
bles P,Q,TySstsUsVsWyeee (possibly affected by numeric sub- and/
or superscripts) and some unspecified propositional connectives.,
Whenever the latter are fixed we use Kukasiewicz's parentheses-—
free frontal notation in order to denote propositional formulae,
In particular,C will be used as a binary cbnnective and 'stands
for any suitable notion of implication (material,intuitionistic,

strict,multiple-~valued,relevant,etc,.).

A propositional language k:is implicative if some notion of impli-

cation C is either primitive in &)or can be defined in terms of

" the primitive notions in h.A purely implicative language is a

propositional language containing only C as a primitive (propo-
sitional) connective,

Lower-case light face Greek letters X,3,¥,... (possibly affected
by sub= or superscripts) will be used as meta-variables on propo-
sitional formulae in some implicative language,modulo uniform re-
letterings of the propositional variables they contain,

Similarly,lower-case bold face Roman letters will be used as cons-
tants for fixed propositional formulae modulo such reletterings.
For convenience,we shall pick out a standard (e.g.,lexical) or-
dering of the propositional variables and use formulae with their
propositional variables occurring in this order as ad hoc repre-
sentatives for specific bold face letters.

Examples (to be used later on):

é += Cpp or := Cpopo.
5 := CpCap

k':= CpCqg

b := CCpqCCrpCrg

E':: CCpgCCqgrCpr

€ := CCpCgrCqCpr

é':: CpCCqCprCqar

Exi= CpCCpag



d := CpCqgCCpCqrr

[»]

CquCCqurCsi...Csnr
CpCqgCrCCpCqgCrss
CCpCqgrCCpqgCpr
CCpqgCCpCqgrCpr
CCpCpaCpqe.
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As a shorthand,a constant formula (denoted by/represented by same
bold face letter)  may occur as a subformula of a propositional
formula & ,In such cases the notational convention is that No proe=
positional variable occurring in P should occur elsewhere in o<,
E.g.,§+ stands for Cpg,i.e.,for CpCgCrg or some lexical variant
of it,but definitely not for CpCpCrp,CpCaCpg,etc.This will be so=.

metimes made explicit in current auxiliary notation.Thus where

i, 3= 1 :=Cp_p,s i, = Cp,p, - -(n3z1),
we will also set
K, = Cx := CpCCpaaq, k1= CpCCijeeeCi_ CCpaq (n321),
ki := CCCppaa, k! := CCijeeeCi_ Ci .4qq (n21)
and
+ + : s .
k, := CCk,rr := CCCpCCpggrr, Kn = CCije..Ci Ck TT (n31),

A (system of) propositional logic will be often confused with the
set of its theorems,but whenever not ctherwise specified,we shall

‘understand by "propositional logic" a Hilbert-style presentation
of some concept of logical derivation.

Where L is a propositional logic,the set of its (well formed) fore-

mulae will be denoted by FormL.
N

A propositional logic L is implicative (relative to some specified
notion of implication C) if (i) so is its underlying language and,
moreover, (ii) the rule of detachment for C (modus ponens;(MP),for
shert)

Cd.'ﬁ,O(' === 5
is a derivable rule in L (say not only admissible in L ;for the

distinguo der1vable/adm1551ble in L see e.g.,Eﬂﬂ) A pr0p051tlonal

logic is purely implicative if it 1s implicative and its under-

lying language is purely implicative,(This is mere technical jar-
gon not intended to commit ocurselves to some particular assumpe
tions — philosophical or so-— concerning what is to be meant by
"implication" at all.,But see [?g];Chapter 1,for details,)



In particular,if some implicative logic is denoted by k then its
pure(ly implicative) fragment (relative to the specified notion

of implication) will be denoted by Lae

In view of a remark of John von Neumann,it is immaterial if we
choose to present a propositional logic with axioms and the rule
of substitution (henceforth: (SB) ) as a primitive rule of deri-

vation or use axiom schemes and give up the rule (5B)+So it will

be convenient to forget any explicit reference to the applications
of (SB),save in critical cases or in examples when we shall adopt
 the usual Polish school notation for substitutions (see,gtg.,kga
or [18]).

While indicating proofs by (MP) (and (SB)) from particular sets

of implicative formulae we shall make heavy use of (a slight refi=-
nement of) C.,A.Meredith's condensed detachment operator (cdo,for
short).

Initially thought of as a simple and convenient notational EXpEm
dient (cf.[13] :Appendix 11, 4], [8], [15], [1e] , 17] ,etc.), this
abbreviative device has also some deeper motivation and applica-
tions as it will be seen later on.

Roughly speaking,where x,B are (purely) 1mpllcat1ve formulae Daﬁ
stands for the most general result of the detachment of P or some

substitution instance of it (as a minor premiss of (MP)) from

or some substitution instance of it (as a major premiss of (MP)).
So QgB makes sense for any two implicative formulae *,B such that
there are substitution instances «',p! of K,B resp, with &' = Cp'y
for some implicative formula ¥eIf this is the case we will say

that QuB is a proof of y or that Quﬁ proves y and it is easy to

see that y is uniguely determined up to uniform reletterings of

its propositional variables.Here "the most general result" must

Y

be understood 3 la C.A.Meredith,in the sense thiat we should not

make unnecessary identifications of propositional variables while

performing the underlying (condensed) detachment.

Obviously,C.A.Meredith's D-meta-notation for proofs by (MP) (and
(SB)) allows a non-ambiguous restauring of the missing substitu~
tions (= applications of (SB)),modulo uniform reletterings of pro-

positional variables,



Examples: where i,k,k',c and Cyx are as earllier we have that
995 proves k',
Dki proves k!

and

Dci proves cg,

while,wi%h applicatzons of (SB) written up in full,the latter
proof might have been displayed in the spirit of the Polish school
as follouws:

4 c = CCpCqrCqCpr
2 = é := Cpp

A [p/Cpa,a/p,r/q) * cC2[p/Cpqg] -
3 = Cx 3= CCpCCpage.

The stipulation requiring the most general result of a detachment
forbids taking say CpCpp for the result "proved by" 995 or Qg;.

As a further notational convention we shall write Qxﬁ = Qm'ﬁ'
if Qaﬂ and Qm'ﬁ' prove the same formula y (modulo the due re-
letterings).So one should have Dck = Dki.

A==
More accurately,the cdo QD may be thought of as being a partial
binary operator on sets of implicative formulae whether pure or
not.We shall give here a closer description of C.A.Meredith's D
using the unification algorithm of J.A.Robinson (cf.,e.g.,{?é}

[24]) For convenience,let us restrict the frame of reference to
purely implicative languages (the extension to arbitrary implica-
tive languages is trivial),
Let k be a set of purely implicative formulaé.Then the cdo is a
partial mapping

Dt Lk v
such that,for all «,p in k,?ab t=

(i) o = Cy'y'" and

D(#,B) is defined if

/U s

(ii) B and the antecedent j' of o« have a unifier in the
sense of [‘.}\Q],
else Ddﬁ is undefined.,
If Dmp is defined then P and the antecedent of « have a most
general unifier in the sense of EL@ (mgu,for short),B' say,and

the due substitution instancesa!,B' of 4,B resp. give ! = Cp'y,

for some y,which is unigue (up to uniform reletterings).Then

DO(&:: Y .



It should be noted that the definition suggested above is cons-
tructive in the sense that the mgu of every two formulae (if any)
can be found effectively by the so-called unification algorithm.
(Actually,the algorithm allows to establish whether or not the
unification is possible and if this is the case it finds out the
due mgul.For details,seei&é},[&&]'or consult E&é} for an alterna-

tive equivalent account,)




2eMeredith R-proofs.

For the purposes of this paper it will be convenient to formali-
ze the meta-language of Q—proofs and to introduce some systema-
tic abbreviations.

For any implicative logic k,let the set of R-proof expressions
(pe's,for short) of L be the least set D, such that

(i) any propositional meta-variable (%3Byxssese) is in D

L’
(ii) any propositional constant (ieeeya bold face letter’
denoting a theorem of k) is in D,
(iii) if x,y are in D, then so is Qxy.A
A
Hereafter,x,¥,2Z5ees (possibly with sub- or superscripts) will ran-

ge on pe's of some arbitrary implicative logic %.

A pe consisting of a single letter (propositional meta-variable

or propositional constant) is atomic.

Further we write (xy) for Qxy and save parentheses by omitting

the outermost pair and assuming association to the left.

E.g.,d(kk)(gki) stands for DDJDKKDDOKi.

AT A= NA===
We also adopt the following use of numeric superscripts (n»0):
for any atomic pe x of some implicative logic k,
x° is the empty word,

xi 2 x and xn""l = xnx,for all n>=0.

Similarly,we write C" (n20) for n consecutive occurrences of C

in some implicative fcrmula,(CC)n for 2xn consecutive occurren-
ces of C,etc.But p?,q?,...(i,j:}ﬂ) are propositional variables and
the superscript "i" has no iterative effect,

If a pe x is defined ("meaningful","denoting") we write xVto in-
dicate this,otherwise (if x is not defined) we write xT.It is
reasonable to assume that a pe x is defined whenever it is atomic,
so we won't write «V¥,p¥,etc,and k¥,i*,etc.either,

A

Examples: sii’ ,wi’ ,but ix¥,kx¥,k'xYwhenever xV (if x is atomic

SaY)o

In evaluating pel's we méy adopt some obvious inside-out and left-
to-~right strategy which can be always represented in a tree-like

manner,



E.ge.,with the example above: d(kk)(dki),we should first evaluate
kk,dk,next d(kk),then dki and,finally,the entire pe,

Tree-like picture:

X k g

x

It should be clear how to define components of pe's (or sub-Q;prbof

expressions;sub-pe's,for short).Further,a proper component (sub-pe)

of a pe x is any component of x distinct from x itself,.(Sub-pe's
of a pe correspond,as expected,to subtrees,in the tree-represen-

\

tation of a pe.)

Now the evaluation of a pe depends on the evaluation of its com=
ponents and it should respect in some immediate sense a variant of

the Frege principle of significance.For,obviously,if some compo-

nent x of a pe y is such that x! then the entire pe y is such that
?
y
one should also have y‘ (otherwise,x is a component of x,for any

pe X)e.

swhile if every proper component x of y is such that x¥ then

So far we have introduced a class of (interpreted) formal langua-
ges suited for some slightly modified typed combinatory logics (cf.
[é],{é] ar [2]: Appendices A,B).To see how they work we need not
develop special theories of reduction for each implicative logic k

but consider only the process of evaluation of pe's,

For any two pe's x,y define x =y if x*,y* and x and y have the
same valuejclearly,= is an equivalence relation on pe's z with i‘;
(So,to make a parallel with the classical case,the evaluation of

a pe may be compared with a kind of "combinatory reduction",while
= is supposed to be introduced by the familiar Church-~Rosser pro-
perty,where"x = y"means that x and y have a common"reduct".In fact,
our pe's have the so-called "strong normalization property" when-

ever they are defined,i.e.,make sense as "typed terms",and hence



our choice of "evaluation" - and not "reduction" — as a central
concept in the "theory of D-proofs”, See also [ﬁ]:QE and [Z]o)

Now = can be extended in the obvious way up to a partial equiva-
lence relation ~ on pe's,and we will want to write"x :of'for any
two pe's x,y,whether they are defined ("meaningful") or not,.(For
later reference note that we have introduced ~ starting from the

definition of = and not conversely,)

‘'The relations = and ~ may be interpreted intuitively as equivalen-
ce (partial equivalence) of proofs (by (MP) and (SB)) in some im-
plicative logic &.

As earlier,if X,y are pe's of some & and y is atomic then y¥ and
we say that x proves y whenever x = YeAlso note that,by construc-
tion,definiteness of pe's (,..¥) is preserved by =.50 for all pe's
X,¥ if x proves y then also xV{(for y is atomic,hence y*,while =
preserves definiteness),

It is easy to check the following combinatory-like "equations":

LEMMA 1,
For all pe's X3Y3ZsZpseeesz, (n71):

(1) ix o~ x (2} kxy o x
(3) K'xy ~ vy (4) k'xyz ~y
(5) bxyz ~ x(yz) (8) b'xyz ~ y(xz)
(7) éxyz ~ XzY (8) c'xyz ~ yzx
(9) CxXY ~ yx (40) dxyz ~ zxy

(11) gnxyzz:‘_...zn ~ ZXy

(12) txyzu ~ uxyz (13) WXy o~ XYy

(14) sxyz ~ xz(yz) (14) s'xyz ~ yz(xz).

Proof.Straightforward consequences from the definition of Q.

Now = and ~ are congruences wW.r.te. D.That is:
- N

LEMMA 2,
For all pe's x,y,z,
(1) if x = y and xz¥ (or yz*) then xz = Yz,
(2) if x = y and zx¥ (or zy%) then zx = zy,
and,finally,

(3) if x ~y then xz ~yz and zx ~ zy,
Proof .0Obvious,X]
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REMARK 3.
For all n>0,
(1) if x¥ and y¥ then = x¥ and [ xyt
(2) if x¥,y¥ and 2z¥ then tx ,txy and txyz®
Some of the following consequences from definitions will be useful

later an,

LEMMA 4,
. For all implicative formulae «,Bp in-.some L and all n3 0,
N
(1) it =ot (2) kxB =
(3) k'np = P (4) ki =gk =K'
(5) ki = gkt = k' =} (6) kk = k¥
(7) ki xB = B (8) ki« = ai™*
(9) koo = o™k,
Proof. Stralghtforward.ﬂ
LEMMA 5.
(1) gt = B! (2) gb' = ple«(p'e") = &
(3) B'o'(B'ey) ='blgug'le’ = g'g'e' = ¢
(4) bbex = gg = ¢ (5) gl =g«
(6) cs = s (7) cs' = s.
PrDOf.Easy.N
LEMMA 6.
For all nZ20,m%2,
. +
(1) ki = K} (2)  kpkn = kq
(3) kpdi= 1 7
(4) kod" = 1

Progof.Easy.R

Where x,y are pe's,let xﬁyﬂ stand for "y is a component of x".
Then we have a

COROLLARY 7.
If xﬁy ~ z andy Y, then xm}éﬂ ~ z,for all pe's x,y,y05z.
Proaof.lUse Lemma 2.8

The evaluation strategy indicated earlier is guaranteed by the

following consequence of Corellary 7.



- 1] -

COROLLARY 8,
For all pe's X9YsY 92 of some k,
if x[Jy} proves z and y proves y, then xlfyo_ﬂ proves (also) z.
Proof.Indeed,if x[ﬂ] proves z then z is atomic and one has i$,by
definition.So x[&]* and also y‘,by the "Frege principle" noted-
earlierj;hence y has a "value".,But y proves Y, SO this "value"
must be yO.SD x[iﬂ and x&yJ} must have the same "value",by Corol-

lary 7.8

Let k be some implicative logic,If B is a theorem of L and
A
Bi" = i
for some m »0,we say that P is m-~solvable.Similarly,a set {Bj:jef}
(IEN) of theorems of L is m-solvable if
Bjim = i

for all j in I EN.,
Then one has immediately

LEMMA 8,
For all «,B in some implicative logic %,
(1) if B is mesolvable (m>»0) then kB =,
(2) k_ is mesolvable,for m32,

=M
(3) Kok = @t,for all m32,
Proof.(1) Use Lemma 4¢(6) and (1) with Corollary 8.
(2) Note that k_ii = ii"i = i,for all m»0.

(3) By (1) and (2).R

Let L be an arbitrary implicative logic.Define,for each m,ny 1,
mappings
. n
Sm,n : Formk —— Formk, -
by: for all Bi,...,ﬁn in Form ,not containing P3s0; (1€ i< n-1,

1<£j<m),

n=-71 1 1 n=-1 n=1
(cc) BlCﬁzpiqu...Cqmpi...Cﬁnpn_iqu sesCq P
o if n>4
sm,n(ﬁi""’ﬁn)" ’
61, if n = 1.
In particular,set for m = 0,d, = ¢ ,n,mith,for all 61""’ﬁn in
Form ,not containing p; (1£id&n-1),
Fal
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(Cc)n—iﬁicazpipi'"Cﬁnpn—ﬁ_pn—‘l’if n > 1
4 (BpreessB) =
51: if n= 1,

LEmmMA 10.
(1) For all Kpseessd in some k (n»1),not containing Psess

Pnh_q20ne has .
n="1
d di"‘dn proves gn(o‘i,ooo,o('n)o

(2) For all Uy geeesX %n some L and all m>0,n»1,where the

c(.k’s do not contain pl,qt (1¢ i€n-1l,1<=j<m),and where

we have set g;‘i = (d) '1,
n-i 7~ - )
gm Oézl-ooun prOVBS‘ ’Clm,n(aiyo.o,fxn)o

Proof.Tedious but trivial.R

Let also L be as earlier and E}be a mapping
A
E,: FormE ——> Form
such that,for all ﬁl,ﬁ2,63Ain Form not containing p,
E(ﬁ1,52’53)3= CCﬁ1CBZCﬁ3DD.
Then one can see easily that

LEMMA 11,
For all a&,aﬁ,d3 in some implicative logic k,

‘E“szaz proves E(migxzfxz).
Proof,Clear.® )
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3eA generalization of Tarski's theorem.

Let L be a propositional logic.Where (Rl),...,(R )y, (r>1) are
derlvable rules in L we say that L is finitely axiomatizable in
the set of rules { 1),..., R )} if L has a Hilbert-style formu-
lation with

(i) a finite number of axioms % seeesx ,(n>1),and
(ii) the rules (Ri),...,(Rr),(SB) as primitive rules of
derivation,

Let now L be an implicative logic with (mp), (RQ),...,(R )y (r =0)
derlvable rules in L We say that L is Tarski axiomatizable in
the set of rules {(Ri)""’(R ) (MP)} if L has a Hilbert-style
formulation with

(i) a single axiom and
(ii) (mP),for the specified notion of implication,together witf
(iii) (Ri),...,(Rr),(SB) as primitive rules of derivation.

(Alternatively,one can take a single/a finite number of axiom
scheme/s and leave out the rule (SB),as indicated earlier,)

Clearly,for L implicative,if L is Tarski axiomatizable in some
set of rules then it is also finitely axiomatizable in the same
set.We establish sufficient conditions,generalizing Theorem 8 in
[15] sand allowing to prove the converse of the above.

THEOREM 42,
Let L be an implicative logic (relative to some specified
notion C of implication),.If
(i) L is finitely axiomatizable in the set of rules
LR veees (RY), (n9)} (3 0)
and
(ii) for some m»0,d, is a theorem of L,
(iii) k is a theorem of L
then L Es Tarski axiomati;able in the same set of rules.
Proof.Let L be the (Hilbert-style) formulation of L with axioms
' Hpyaensd (n> 1)
and rules
(Ri),...,(Rr),(MP),(SB) (rz0).
(If n = 1,there is nothing to prove but we include this as a limit

case,)
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Define,for m%» 0 and n»1,(m,n fixed),
h

2m,n = Em,n(ai""’an)‘
Then,by Lemma 10,o0ne finds that
n-1
=m mﬁ...oc proves Q ,n
and since d is a theorem of Ln’hm n is also a theorem of Ln

(for Em n can be proved by (MP) and (sB) from the axioms of kn;
hence the result holds for r = 0,too),.
Now set
) t= d (k k¥,h )
+ ZMy,N ~m,3 == ’=m,n ’
with k,k" and Dm n as above,
- = =ity

Cur claim is that = is the needed single ax10m.F1rstly,gm n is
=t

a theorem of L .Indeed by Lemma 4:(6),0one finds that
kk proves k
and,by Lemma 10,

=M=M== =

hence the result follows by Corollary 8 (for g,dm are theorems

d d kk”* m,n proves gm,n’

of L sby hypothesis).
On the other hand,let L* be the (Hilbert-style) formulation of
L with 9n.n 23S single axiom and the same rules as earlier,

i |
(Expllc1tel% 9m,n 1S
Sm,n ‘= CCCCka TyCspeeels rlchm aToCtpeesCt 5. o)
Using E-proofs one can show quickly that
m
gm,ngm,n(gm,n) proves 5’
and,in particular,for m = 0 and with 9, = 9, n,for convenience,
-9

one finds that R

9ngn PTOVES k.
(It is a tedious affair to find explicitely the needed substi-
tutions,but the matter is completely trivial and we have only
to take some care in applying correctly J.A.Robinson's unifica-
tion algorithm.For instance,displaying substitutions a la Yuka=

51ewlc; [ig] sone has,with k t= Cp18q1p1 and Qn := Qo,n’

= gn= CCCCqupCCrCsCtsuuCh vV
2 t= gli= 1[p/CCh KCh_Ch k,q/CrCsCts r/bns8/Py st/
W/Ch Ch o v/K]
3 := gé%: i[b/ang,q/q,r/r,s/s,t/t,u/CCQngcganng,v/ang]
2 * 3 « 4
4 1=k = CpyCaypy,
1eCoe ,g;‘ o= Cg[;”'.—f.)
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Now,h n is a theorem of L* for one can establish that

=T m+1
n(ﬁg)k proves gm,n’

while the axioms g seee s of kn can be extracted from Qm,n

as follows,
With,for 4% j<$n=1,set
= h k(m+1)xj

h . 1=
=My Ne ] =My N=
(that is:
m m+1
Qm,n-i *= 2m,n55 = 2m,n§
. m _ (m+1)x2
Qm,n—Z * 2m,n-1§5 - Qm,ng
h e h k™ - h (m+l)x(n-l) ).
=m,‘1 T =My &== ] =M, n._
It is easy to see that,for 1= j=<
b j(55)5m+1 proves aﬁ,
=m, j'=='=
so the axioms of L _ can be proved from g by (MP) and (SB)
=My

only (i.e.,for ©r = O,too0).

(These axioms imply alsoc that gm is a theorem of k*,by hypothe=-
sis.)

So &n and E* are equivalent.®

REMARK 13,
Tarski's Theorem 8 in [&;] is a particular case of our

Theorem 12 with m= 0 and m = 1,

REMARK 14,

Our method of proving Theorem 12 does not provide organic
axioms,in the sense of M.Wajsberg (for an axiom system L,an
axiom of L is organic if it has no subférmulae,except igself,
that are fheorems in k) and this was also the case with Tarski's
original method of proof, as reported in [11]'(The import of
an organic axiomatization is explained in LZ&] )

Another practical inconvenient of both methods (see [23} and
‘lﬁ] for Tarski's examples) is in the fact the single axioms
obtained thereby are very long.

In the end,Theorem 12 is of some theoretical interest since

there are systems of propositional logic that are finitely
axiomatizable in (MP) and still not Tarski axiomatizable in
(MD).E.E.,the purely implicative fragment Ia.Of the logic of
"Ticket Entailment" of A.R.Anderson (cf. [1l) cannot be axio-
matized with a single axiom, (MP) and (SB) ;nly.(This result is
due to 7,Parks;see L}],B.S.Z.,for details.)
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REMARK 45,
If we had considered the additional condition
(iv) t is a theorem of L
among the hypotheses of Theorem 12,the construction of the
single axiom Qm n might have been somewhat different.
Indeed,with b n @s earlier,set
Qx,n t= Exg 2D, nok) = CECQm,ntﬁrr
for the new single axiom,
Nouw,as
tkg ng proves Q;,n
by Lemma ii,g* is also a theorem of (the new) L.
Let L%

and primitive rules as earlier.

My N
be the new formulation of L with 9. o 2s single axiom
A =iy
It is easy to see that
* *
gm,ng;,ngm,n proves Kk
and
* g¥
n,n{gh,ndn,n) Proves h
(for this note that
+
* g*¥ = =
gm,ngm,n = 55 - 5 )s
while thecxj's (1€£i<n) can be obtained from B newith k
= 9 =

readily available,as in the proof of Theorem 12,

My N

(The combinatory argument behind the construction of 9m n
is due,in essence,toc J,B.Rosser [unpubllshed] 3cfe ﬁjﬂ
and Theorem 28 below.)

Let BCK, be the Meredith (purely) implicative logic (cf. El@l
Appendlx I, ﬂﬁ] ﬁf],etc ),formulated with (MP),(SB) as primi-
tive rules and axioms b,c K (for alternative axiomatizations see

[iél and [ig]) As pointed out by H.B.Curry,K.Iséki,R.Routley,
R.K.Meyer,D.Meredith gt al. there is some interest in studying

QCKQ and its extensions from both a combinatory and an algebraic
AA

point of view (cf. the references in lﬁQ]) But it is also a
logical landmark in axiomatization problems Indeed,one has the

following consequence of Theorem 12 above,

COROLLARY 18,
Any finitely axiomatizable extension of @q% in some

set of rules {(Rl),...,(R Ys(mP)} ,(r»0),is Tarski axioma=-

tizable in the same set of rules.
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Proof.Note that
k proves i, Lemma 4:(5)
PTOVES Cy, Lemma 5:(5)

becy proves d

o

= ]
then apply Theorem 12,with m = 8.
Alternatively,one has also that
b(bg)(bggx) proves t,
SO0 E is a theorem of agﬁq and one can apply the:arqument of

Remark 15 above.H

Now §C§9 is known to be a subsystem of many familiar (proposi-
tional) logics.The following list is far of being complete,

COROLLARY 17.
The following logics are Tarski axiomatizable in (MP):
(i) the classical logic ty and its purely implicative fragment

TV, (cf. i3], 22), [1g),etel);

(ii) the intuitionistic logic H and its purely implicative
fragment H, (cf.[§]);

(iii) Hilbert's positive logic,Johansson's Minimalkalkul and
any (finitely axiomatizable) intermediate logic (in (MP)j

see {51),
(iv) Kukasiewicz's many-valued logics Mn (n>3) and &K(cf.giéj),
A ) A A
etc,

Proof.Trivial derivations,using Corollary 16.%

REMARK 418,
Arguments similar to those used earlier apply,mutatis mu-
tandis,to quantificational extensions of the logics named

above. (Do the exercises of [1?],section 4,)
A
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4.,Refinements for relevant logics.

R.N.Prior noticed (cf.[ié},page 181) that the original methods

of Tarski for obtaining single axioms do not work in the absence
of the "paradoxical" Law of Simplification 5 (:= CpCap).In par-
ticular,this comment applies to several interesting (implicative)
logics among which the relevant logics R,E and some of thelr
neighbours or rivals (see [-’l] [25) [28] etc.).

It will be clear from what follows that Prior's statement no lon-

ger holds for our methods,

Actually,the problem of axiomatizing Church's weak implication (in
[j},;,g.,the system R, of [i]) was raised incidentally in [118;5.1.
In [&9] we claimed that R, and the Anderson-Belnap Pure Entail-
ment system E, of Eﬂ are Tarski axiomatizable in (MP) but the
effective example of single axiom suggested there,for Rq,contalned
an oversight,

In this section we shall state explicitely - this was not the
case in [Eé] - some alternative lists of conditions guaranteeing
the Tarski axiomatizability of a large class of (purely implicati-
ve) relevant logics (in the sense of E{],Ea%]),among which RasEsy
etc.

We shall first introduce some convenient terminology.

Let L be a (purely) implicative logic.A theorem of L is solvable

if it is mesolvable for some m7, 0,otherwise it is unsolvable,Sets

of theorems of L will be referred to similarly.
Examples: b,b!’ ,c Cxoisk, K (m»0) are solvable,while w,s,s' are

unsolvable.
Clearly,unsolvable sets may contain solvable elements,but we needn't
distinguish among such subtleties,
Let L (implicative) be now finitely axiomatizable in some set of
rules {(R ,...,(Rr),(mp)} — (MP) for the specified notion of
implication em with r »0,and all its axioms in the set

B(L) —’{0(.,1,.--, p;Bﬂ_,o--,ﬁ}
(Psg 2 0,p + g 2;1) such that the o 's (4‘41 p) are unsolvable
and the BJ's (1< 3j<q) are solvable, Usually,B(L) is called a basis
for/of L Hereafter,"B(L)" will refer to this descrlptlon with p,q
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varying as indicated (n := p+qg positive,with possibly either p = O
or q = 03so no basis is empty,but it may contain no unsolvable,
resp., No solvable elements).

Consider now the functions gn '= go,n of section Z.let m30.

A basis %(k) for some implicative logic L is sequentially m-quési-

solvable if its 'elements can be arranged in a sequence
ui"“’dp’ﬂi""’ﬁq (p+a 7213p,q ZD))

with thE‘ujfs unsolvable, and there are theorems

xi"“’Xp

of L such that the following formulae are m-solvable:

(1) ¥isBj (14i$p,1< j<q)
(ii) vy i= do(ots ;) (141 <p)
(iii) Zi - ~i(¥1,oo-,¥i) (11éi:§p)

(iv) QJ t= j+1(f‘,34,---,8j) (1< j<a).

(Note that :1 s Vl 1= d ( ’Xﬂ. and 21 = §p+1(_‘__’19---,\=7p’51)9
by the definition of gi’gzgcocgd

~p+1°
In particular, B(L) is sequentially m-solvable if p = Ojthat is, -
B(L) {51,...,5 § contains only m-solvable axioms and for some
permutétlon g of the set {1,...,qk the formulae
bt := d. <3<
HT t= 95 (Bagnyseeesbr(s)) (1% 3% q)

are also m=solvable (v1z.,H§ proves i,for all jsl=j<q).

For simplicity,we shall consider first (purely)implicative logics

possessing at least one @equentiallﬁ)m-solvable basis, for some
22, Next we shall extend our discussion to implicative logics

possessing arbitrary bases.,.



THEOREM A8.
Let % be an implicative logic (for some specified notion C
of implication) such that
(1) L is finitely axiomatizable in the set of rules
{(Rp)seees (R, (MP) ¥ (z20),
If,for some m2 2,
(ii) L has a sequentially m-solvable basis
(iii) Kk, is a theorem of Ly
and
(iv) d,t are theorems of L
then & is Tarski axiomatizable in the same set.
Proof.let oy ,eee (n >1) be the axioms of L (taking n = 1,tri-
vially,as a limit case of the Theorem) and construct,for an appro-

priate 7* ,formulae

C
ha = d PP 3 1< '$n .
byt glemigysee et y)) (14 1< n)
Sequential me-solvability means that,for some 7 ,one has
;X;j_j_.m proves i (1£3<n),
h’j proves i (1<£i<n).

Now recall that,by Lemma 9 :(2) we have
Emém proves i, for all m22.

We claim the needed single axiom is
g?%,n) = ﬁxgm’gﬁ’ﬁm) = CCgmﬁgﬁﬁﬁmpp

(observing the relettering convention of section 1 above),

Indeed,k ,d are theorems of L (the hypothesis of the Theorem),sc

HW is a theorem of L,for,by Lemma 10, ‘
gn-imi...a proves éﬁ for any 7.

As t is a theorem of L (by hypothesis,again),one has also that,
for an appropriate7f,g?; n) is a theorem of k,since
- ’ i

tk Hrk proves gz; n)?
- ?

===
by Lemma 11,
Conversely,let Ly be the formulation of L with gy = g?%’n),for
convenience (m,n fixed), and primitive rules as earlier.
One works in k*,deriving first ém from g*,next gﬁ and,finally,
the dj's (A% j<n).This can be done as follows:

9xQ9x PTOVES 5;,
for g? is mesolvable,by the hypothesis of the Theorem.
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Recall also that,by Lemma 6:(2),

+

koK, Proves Kk, (m20),

so
+

9x9% = K.Kn, = K (m>2)

and hence
+ 4+

g*g*ﬁm = l=<m}=<m = ‘=<m (m72),
given the m-solvability of k_ for m3»2,(Lemma 9:(2) above),while

g+3xk}  proves i for m = 2,
and therefore

9x9xL = 5m-_lfmi' = =i=iml_-_<.m = L__fm (m = 2),

by Lemma 4:(7) and Corollary 7,etc.
So far we have shown that 5m is a theorem of k*,for all m7 2.
Now

g*ﬁ; = g*(ﬁmgm) = Eﬁ’
for k_ is m-solvable (m32),by Lemma S:(2).
That is,collecting the facts,

9x(29+9x) proves QT for m>»2
so,anyway,gm,g; and gg’can be proved from g, by (MP) and (SB)
only and the result holds for r = 0O,too.

Next,since ocj_i:m proves i,for 1< j< m,we have

e P - lrd

Qngm - Qn—i

T _ T2

Qn-igm - Qngm - Qn-z

e = F%™Y - - «

== - == - =1 - '1.
Finally,for all j,A<j%n,

Ty, +

ngmgm proves o(j (m>2),
since

5§§m proves i (1< j<n)
and

ki, Proves i (m=22).

Therefore,each & (1€ j<€n) is provable from g, := g?} ")
= =\
by (MP) and (SB) only,and this completes the proof of the

Theorem with 3 0.8
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Unlike in Theorem 42,the hypotheses of Theorem 49 allow also
applications to (purely implicative) relevant logics (in the
sense of E%],[2%],[2§],[%§],[%§])-But,as earlier,in section 3,
where we paused on C.A.Meredith's QQK;?,we prefer to reach that
point via some intermediary landmark.The motivation behind this

détour will appear soon.

Let BCI% be the JasSkowski-Meredith purely implicative logic (cf.
[18] Appendix I, [14],sectlon 7,0r even [111 whose "Postscript"

gives the reason we had to use the name above) This is,by the way,

a relevant logic in the sense of E&],[%%}.Specifically,it coinci-
des with the purely implicative fragment of what the defendors of
relevance use to call "Relevance without Contraction” ("axg“,for
short,where both "WY" and "Contraction" denote our formula w,that
is: "the Hilbert formula" of the post-war Dublin residents,whether
Polish or not) and has been studied — on different grounds —

by various persons among which S.Jaékowski,C.A.Meredith (as prin-
cipal proponentsjsee references given earlier),A.Church,N.D.Belnap
Jr.,A.Urquhart (cf. Ls] [27]),R.Routley,R.K.Meyer (see {22] and
the references given there),and the author ({{9])

By definition,BCI, is finitely axiomatizable in (MP) with,as
axioms, b c and 1 CeAe.Meredith has also established its Tarski
axlomatlzablllty in (mMP) (cf. EiB] Appendix I, E;a] section 7;for
alternative axiomatizations see also %g])

We will be interested in extensions of BCI still possessing this
property.

One has the following straightforward consequence of Theorem 19,

CORDLLARY 20.
Any finitely axiomatizable extension k of %&{4 in some
set of rules {(RQ),...,(Rr),(MP)} s (r 70),such that L has
a segquentially m-solvahbhle basis,for some m7 2,is Tarski axi-
omatizable in the same set of rules.
Proof.Note that
ci proves Kk_ = Cy,
by Lemma 5: (5),and as in Remark 15,
becy proves g := g
and

b(bc)d proves ¢,
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Also,for all n=z0,

: clkpi) proves k.4,
so d,t and the k_'s (mz0) are all theorems of BGI,.
Finally,apply Theorem 19 to the case in point.R

To get the Tarski axiomatizability of Church's weak implication
(and to show that there are logics satisfying the hypotheses =
indeed,somewhat involved = of Corollary 20 ) recall first that,in
{3],§9 was finitely axiomatizable in (MP) with,as axioms,g,g,g and
i.Henceforth,R; will denote this formulation of Church's system.
ZBut note that the basis {y,g',g,;:}has the same effect as
Church's,in view of Lemma 5:(&) and (2),and similarly,with c repla-
ced by either Cy OT g' and/or W replaced by s or §,etc.;see-£1§]
for details.) B B B

Clearly,Church's basis is unsolvable due to the presence of ] (for
wi is already undefined;and similarly,for the remaining four:ele-
-;;nt bases suggested earlier).Sc even if §§§é is trivially a sub-
system of R,,we have no means to apply our Corollary 20 {or,equi-
valently,Theorem 19) to Church's system unless we can find a sol-
vable basis for it such that it is segquentially so,toe.In order to
do this and to shorten both the underlying verifications (for '
sequential solvability) and the length of the resulting single
axiom we shall do first of all some axiom chopping,.

(The combinatory argument behind half of the following Lemma — its
"hard" parte-relies on a similar construction which could have been
traced back to the work of the pioneers of combinatory logic,viz,.
to F.B.Fitch's Yale dissertation,1934.) |

Define some more bold face types, namely,
@ := CCpCgrCCspCqgCsr,
w':= CpCCpCpgqg.

Now we have a useful

LEMmMA 21,
R» 1s finitely axiomatizable in (MP) with,as bases,
(1) fw,i,a} (i1) fu',i,al
(ii1) {2'9292’___{} (iv) ig':g':g:g’}
(v) {g',g,g*,__i:} (vi) Ii__‘l_"’g"g*’g}
(vii) {g'!g9g"§} (viii) ",_E_"__‘?"g"__j_:},

etce.
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pPproof.lLet,for convenience,gi(aa),uith'iﬁ i<8,be the corresponding
bases and'go(aé) be Church'!s basis {S,E,g,il
(i):Eo(aﬁ) is contained in 51(543 for one has that

and

proves c,

PTOVES Cy, Lemma 5:(5)

ip o I
HO e fl

% Pproves b',

o
Hfon

proves b, Lemma 5:(1).

Conversely,

so B (R
~0 A
(ii):8,

and

(iii)=(viii)

LEMMA 2
Fer

(4)
(2)
(3)

(8)
Proof.T

b(bc)b proves a,

5) contains By (R;).

(64) and 92(39 are equivalent,for

cw proves w!

cw'! proves w,

Use (ii) and Lemma 5.K

2e

all<2,§i,ﬁz,ﬁ3,ﬁ4 in any implicative logic L

w'n = dxe = d(Lha);

w'ii -= 1 (i.e.,y' is 2-solvable or m-solvable with m322);
woi = Bii = i (4) wb'i = b'ii = &

and b' are 2-solvable and therefore m-solvable far m%2).
wai = aii = cu; (8) cuii = 1 (cx is 2-solvable);
ab,B-B.B, ~ 51(5 B,)B; and 2 is m-solvable with m34.

C» g' are 3=-solvable (and hence m-solvable with m»3)e.
rivial.®

COROLLARY 23.
Ez(ia) = {w',i a} is sequentially 4-solvable,

Proof.A

s i is O-solvable and,by Lemma 22,w' is 2-solvable and a

is 4~solvable the set Bz(Rq)lS altogether,m-solvable with mYbe

Now set 21 i= 2"22 = Qa(g’,i) .= CC” Clplpi and

hy :=

dz(u',i,a) := CCCCw'C1p1p1Cap2p2,mlth notational con-

ventions as in the proof of Theorem 18,for the sequence 2"é a

(7 is

the identical permutation on the set {1 2, 3})
Clearly,hy is 2-solvable by Lemma 22:(2).Further,one has that
hoii= ii. = i by Lemma 22:(2),

so h, is 2-solvable and,finally,



hoiii = hoaii = aw'iii = g'(ii)i = w'ii = i,

=3=== _= EmEEoEE=

by Lemma 1:(41),Remark 3 and Lemma 22:(2),(7),with Corollary B,Thus
53 is 3-solvable and,altogether,the SEt'ibi’Dz’DS} is m=solvable

with m» 3.This completes the proof.R®

Now we get the envisaged result,viz,,

COROLLARY 24,

Ry is Tarski axiomatizable in (MP).
Proof, BCIQ is a subsystem of R, (cfoChurch's basis) and,by Corol-
lary 23,it has a sequentially 4-solvable basis,namely 82(R
{w ,1 a} So the result follows by Corollary 20.
Explicitely,where 23 is as in the proof of Corollary 23,the single

») =

axiom obtained on the pattern of proof of Theorem 49 is
L i= b(k4sD3sk,) = CCk,ChsCk,pps

as expected.®

REMARK 25,
23(§9) = ig',g,g,g} in Lemma 21 is sequentially 3-solvable,
so we might have been obtained an alternative (longer) ‘single
axiom starting from this basis of Rj;.Indeed,set hi $= w'
h% := d,(u',1i),h¥ := d3(w',i,b) and h¥ := d,(u',i,b,c).It is

easy to see that hf.,0% are 2-solvable (cfathe pr@af of Corol=-
Tia 3 2 ;3

lary 23),while h% is 3-solvable (h i~ = hybi® = bu! = w'ii = i
and h¥ 1s 2-solvable (by h,i 2 - h§95 = ch¥bi = h*lb = w'ib =
= g&ég = bii = i).S0 the new single axiom for R, mould be

® [ ] *
o* 1= t(kgyh¥,ks) i= CCkCh¥Ckpp.

More variations on this theme are certainly possible,
A shortcoming of Theorem A9 (resp. Corollary 20) consists of that
it can be applied directly only to (purely implicative) logics
possessing at least one solvable basis,This motivates the following

generalization of Theorem 49.

THEOREM 26, ,
Theorem 49 holds with "sequentially m-solvable™® réplaced by
"seguentially me=quasi-solvable",
Proof.lLet L be finitely axiomatizable in some set of rules con-
taining (MP),for the specified notion of implication,with axioms
1300-9 D’Bj_’OO-sB (p,q?,D,p+q 71),
where the¢¥ 's are unsolvable and the Bj's are m=solvable,for some

erl.Construct now,forgi,...,xp m=solvable theorems of %,formulae
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y; = gz(o(i,b’i) (1< i<p),
:i = (Vi,coo’\/ ) (1éiép)’
by = G iBraesssBy) (125<a).

By the hypothesis of the Theorem these formulae must be m=sclvable,

~ too.The needed single axiom for L is now

g = 9(p,q,m) = t(k n?Dgsk k o) t= CCkpChoCkySS
and one has,as earlier in the proof of Theorem 19, that
sg(zg) proves ki,
for Eq is m=solvable (and so is 5m) and
g9(gg) proves Qq.
"Sequentially" points out,as in the case of sequential solvability,
to the way of obtaining the x;'s and the B.'s (1< i€ p, A< i< q).
Specifically,the h.'s (1< j<gq) and I, can be obtained from =Qq,_i_._te_.
b proves Ds_qrbqKy, PToves fo (s j<aq),
for the BJ AL j< q) are m—solvable. » ‘ i
Then the f.'s (1< i<p) can be obtained from f, as follows:

fik, proves f. , (ik-i<-p)
for the v,'s (1€ 1i<p) are m-solvable,(Note that £p t= Yqe)
Now the remalnlng v.'s (1<i$p) can be obtained from the f;'s,1.8.
fi(k K, )k, Proves y. (1<is p),
for the f,'s (1<i<p) are m-solvable.
Finally,the « 's can be obtained from the y;'s (1< i <p),since the
¥;'s are supposed to be m-solvable and hence
v;k ~proves o (1 €£isp),
while the Bj's (1< j<q) can be obtained from the corresponding
Qj's,as‘expected,i.g.,by
by(kpkn)ky, proves B, 1% 3i<a),
for Qi""’gq—i are m-solvable,
On the other hand,g := 9(p,q,m)
X&'S 1< i<p,were supposed to be theorems of L whlle d is a theorem
of k by the hypothesis of the Theorem) 5 and t This completes the

proof (Lemmas 10 and 11 were used tacitly).®

is a theorem of Ls for so is hq (the

REMARK 27.
An analogue of Corollary 20 holds with "sequentially m-

solvable" replaced by "sequentially m—gquasi-solvable”.
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REMARK 28.

As an application of Theorem 26 (resp. Corollary 27) consider
Church's axipmatization of Ry with
d"l = gaﬂ;i = __‘1-’32 o= 5,53 = 2.
‘Set  y4 = B! (recall that cb proves b'),
1= ii 1= 22(2,2').N0w,mith the conventions of the
heorem 2%,o0ne has

= g, (g i)

HE"U‘
—HH

’ ?
»0',1,2),

d,(

o

and

Bz = 9ulfysir2,B) = d5(u,b's1sc,0)e
Using now Lemma %,Remark 3,Corollary 8 and Lemma 22:(4) one
can show that fi’hl and h2 are 2~solvable,while h3 is 4=solva=-
ble.As the set of ﬁ 's (j =4,2,3) is 3=solvable and W i= b
is 2=solvable (cf. Lemma 22:(3),(8),etc,),we have already es-
tablished that Church's basis is sequentially 4-quasi-solvable,
On the other hand,we know that d,t,and 54 are ﬁe-theorems (cfe
the proof of Corollary 20),so Church's system is — again —
Tarski axiomatizable in (MP) with,as single axiom,

£ = E(k4sh3sk,) i= CCk,ChsCk,pp,
where QS is as in this Remark.

REMARK 29,

"1t is possible to shorten the latter single axiom r&,obtained
in Remark 2B,using the fact that aii proves gy (cf.lLemma 22:(5))

Indeed,set,with the conventions of the proof of Theorem 26,

o, := 2’b1 S ;,52 = b and ¥ := a.
(Wwe have seen in Lemma 21 that a is a theorem of BCI, and hence
of 8\‘;.)
Now construct formulae y, := gz(g,g),il = Vyshy = dz(zl,l) t=
:= dz(w,a,i) and b, := d3(f;,i,b) := d,(w,a,i,b).0ne finds easi-
ly that h,i> proves c, (for h.i> = h,bii = bf,iii = F,(ii)i =
=2= =% =2= =l=== ——'=1._=5 =1\==/=
Fi = wai = aii = c*),so one has also that in = i,for gy is
2-solvable.Next h, is 4-solvable for hyi = £,1i% = wai® = a1’ =
=1= === 3=

i and,finally,v, := f, is 4-solvable,by the same token (f i

yg;S,etc.) So the set {w 1 b} is sequentially S-qu351-$olvable
;EE we may set as 51ngle axiom (for Eq) g&.= CCESCQZCESDp,wlth
92 as above.,The additional trick (beyond the pattern of proof
of Theorem 26) consists of getting Cx from h, and i.But the set

Zw 1 b c*} is a basis for R, (by Lemma 5).
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Theorem 19 admits now of a generalization in some other direction,

viz, by generalizing the concept of solvablllty.

Let L be some (purely) implicative logic and ﬁ t= ﬁi,...,ﬁ”

a sequence of theorems of L (possibly with repetitions and possibly
empty).For B fixed set

k2 1= CpCCPy...CB CCpag.

(One can sge easily that for B empty one has kb 1= K, = Cxe)

R set {Ni,...,d } of theorems of L is 9—solvable (for % fixed)
if dJE 1= djﬁi...ﬂn,proves i for all j,1<j<n,

Construct now for some sequence dl""’ (of theorems of k) for-

mulae hJ = d Qxi,...,a Y with 4<ji<n.
A set %x ,...,d'} of theorems of L is seguentially ﬁ-solvable (for
B fixed) if its elements can be arranged (without repetitions) in

a sequence di,...,a say such that
(i) each a_ is ﬁ—soluable (1<£j<n),

(ii) each h (constructed as above) is f-solvable (1< j<n)
and,finally,

(iii) k3 is BLsolvable. N
Clearly,lf each ﬁ in B (A< i< m) is the formula l,B—solvablllty
for this ﬁ amounts to m=solvability and sequential gLsolvablllty
coincides with sequential mesoclvability .ﬁop m>2,

One can prove by a straightforward extension of the methods used
earlier that the following generalization of Theorem 19 holds.

THEOREM 30.

Theorem 19 holds with "sequential m-solvability™ repiaced
by "sequential B;solvability" for some fixed sequence =
Bi""’Bm of theorems of L and with "k_ is a theorem of L"
replaced by "§§ is a theorem of k ",

Proof.Mutatis mutandis,as for Theorem 49.8

REMARK 31,
Note also that Theorem-19 becomes a particular case of
Theorem 30 with‘§ t= ;i,ﬁ,.gém (the g.'s are lexical variants

J
of i,as in section 1 above).
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Theorems 49,26 and 30 do not apply as such to the purely implica-
tive fragment §ﬁ of the Anderson-Belnap Entailment system (cf,. [ﬁl)
due to the fact d,t and the k_'s (m70) are not theorems of Ese

But the pattern of proof used earlier still works for some slight

modification of the corresponding hypotheses.

Define first,with P = Cp'p'',q := Cg'qg'! and T o= Cr'r",the
following formulae:

CACHCCACHeT,

CHBcHcRCccpcicess,

€4 := CPcchaa,

CRCCijeeoCi CCHaq, (n>41),
CCpCQrCHCpr,

(A1l thes; formulae are theorems of L, ,as one can easily eheck
using the Fitch style formulation of 59 in E%].But see Corollary 33

nou

()

whgx§uxwhﬁﬂu>
W

below for the corresponding Hilbert style derivations,with conden-

sed detachment.)
We can now establish the following (stronger) form of Theorem 19.

THEOREM 32.
o
Theorem 19 holds with Ko (m%2),d,t replaced by k

Proof.As earlier,for Theorem 19.8

nad>
34

? resp.

m’
Let now Qﬁ}a be the (purely) implicative logic axiomatized by
b,€ and i with (MP) and (SB) as primitive rules of derivation.
It is known that §§§q can be axiomatized also with (MP),(SB) and,
as axioms,b' and Q:= 5:) y1.2.

2 := CCCppaq,
(cf.,g.g.,‘i{] oT E&],B.S.i.;the result is due to M.Wajsberg,C.A.
Meredith and N.Belnap Jr.,independently).C.A.Meredith has also
found that Q@{a is Tarski axiomatizable in (MP) (cf.[@d],section
10 or [1],8.5.1.). 7

It can be easily seen that the following (stronger) form of Corol-
lary 20 obtains,

COROLLARY 33,
Corollary 20 holds with %Fle replaced by 3@}%.

Proof.Note that Séé* proves d,b(bE d proves -’Eo := B, and ti

et

.

) proves'gm+a.Then apply The-

e it

proves Ty,while,for allm?,0,c Em

orem 32,8



One has also the following (stronger) analogues of Theorem 26 and
Remark 27.

THEQREM 34,

A
Theorem 49 holds with d,%,k replaced by d,t,K_

and "sequentially m-solvable" replaced by "sequentially MeqUaSim

resp. (m=2)

solvable',

Proof.Mutatis mutandis,as for Theorem 26.R

COROLLARY 35.
Corollary 20 holds with BCI, replaced by q§;4 and "sequen-
tially m-solvable" replaced by "sequentially m-quasi-solvable',
Proof.Note that Q,E,and the Em's (m>0) are theorems of qua ,then
apply Theorem 34.8

Recall now (from [%],say) that the following sets of formulae axio=-

matize the Pure Entailment system E,with (MP) and (SB) as primi-
tive rules of derivation!

(E5) = {u,b,% it B (E5) = fu,b',0}
(the latter one is Belnap s preferred basis for E,). Clearly,E., is
a (proper) extension of BCI (though not of QQ}Q) and we may rea-
dily apply Corollary 35 to Belnap's basis Ei(gq) say,getting the
expected result,viz,,

COROLLARY 36.
E» 1s Tarski axiomatizable in (MP),

proof.(Nearly completed above,Still,for the sake of effectiveness
we can afford the following considerations.)

Set %4 := w,p,; := 2,32 i= b' and ¥, := b'.Further,with conventions
as in the proof of Theorem 26 (resp. Theorem 34),set Vq
22(w,b")5hy 1= gy(£y50) := dz(w,b',0) and hy := d3(fy,0,b")

g,(w,b",0,b")eNow h, is 2-solvable for h,ii = hyb'i = b'fyoi =
8{f4i) = o(wb") = wb'i = b'ii = i ;h; is 1-solvable for hyl = f40 =

== == =

o(wb') = wb'i,etc. and yp t= f, is 2-solvable (f ii = wb'i,etc.).

Finally,b' is 2-solvable and o0 is l-solvable. Thus Belnap's basis
is sequentially 2-qu351-solvable and the single axiom for ;» might
be now,with h, as above,

e = t(kZ’hZ’kZ) t= CCkZChZCkzpp,

on the usual pattern.employed earlier for Ra.ﬂ
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REMARK 37.

As expected,a (stronger) variant of Theorem 30 holds with
kE = CCp! p"CCﬁi...Cﬁ CCCp'p''qq instead of kE,For some fixed
sequence ?..s Bi,...,B (m%2 say) of formulae of L The corresw
ponding statement is an obvious generalization of Theorem 32

REMARK 38.

Unlike the methods of proof available in the presence of k
(in section 3 above) the methods of finding single axioms used
in this section do not apparently apply to implicative logics
containing conjunction and/or disjunction (these ingredients
would obviously block the application of the unification algo=-
rithm while evaluating pe's).In particular,the full Relevance
logic R {(cfe [i] [Zé] LZS]) the Entailment system E of Anderson-
Belnap (cf‘ Eﬂ fZS]) and the Prawitz-Urquhart system s (cfa [28],
say) as well as many other (propositional) relevant loglcs Te-
viewed in [1] and [22] are cases in point, Specifically,it is an
open problem whether the relevant logics R E S etc, are Tarski
axiomatizable in (MP) and the Adjunction rule (ADTI) .

Xy == Kap
(where K is Polish notation fer conjunction).

(It should be however obvious how to obtain 2-axioms bases for
these logics,with (MP),(ADJ) and (SB) as primitive rules,due

to the presence of CKpgp and/or CKpgg.)

But note that the CN-fragments (i.e.,those containing implicatior
and negation only) of the relevant logics above (as well as many
other similar systems not named here) are Tarski axiocmatizable
in (mp).

31 December 1981

Alex.van Humboldtstraat 4,
3514 GP Utrecht,
The Netherlands,.
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, Appendix:
On a2 Singleton Basis for the Set of Closed Lambda-terms.

As reported in [g,page 180),C.A.Meredith maintained once that the

following lambda-term .
G =: Axyz.y(Au.z)(xz)

is a basis for the set of closed lambda-(K-)terms.Still he did never
supply a proof of this claim in print and several attempts to a recon-
struction of the missing derivations (see,e.g., 2ypage 283} or |3,pPe.
10-11]),even with the help of 2 computer (programmed in 26K LISP by
Professor W.L.van der Poel),have been unsuccessful so far,

Actually,the needed argument is relatively simple.

Recall first some current notation in [g]:
I =2 Axex, K =2 Axyex, K'=: Axy.y, B =: Axyz.x(yz),

2 Axyzey(x2z), L =: Axyz.xzy, Co=: Axy.yx, W o=: Axy.xyy,

L]

B'
Yy=2 Axexx, S =: Axyzexz(yz), S' =:Axyz.yz(xz).

Further,set for any closed lambda-term X, X1 =: X, X =t X X

(n a positive integer).= will denote I:ueta-c:on\:re::tibili’c;f’-L "
Note first that G = Axy.y(xx).0ne has immediately that

Ex = G656, I = GCuCy, K' = GIC,I and K = GK'Cyke
Now one can obtain B',B and C.Indeed,set E =: G(KC,)G.(Note that
= Axy.x(Ky) = B'K.).
Then B' = G,(KE) = EG,E, B = B'C,(B'8') and C = B'B'(B'C,).
Finally,one needs -any one of Yy,W,S' or S.The former two are easy
to get: take,e.g., y*ﬁ’-' 9_1(.[53.1.) = GI(Cyl) or ¥ = .‘:12(5(2*&3))‘

For S' and S one may proceed as in [é],viz.'by realizing that

S' = B'G(B"(B'(C4B))) and,finally, § = Cs!,
Question: is there any basis shorter than G?

Im
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